Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(15): 155301, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30630145

RESUMO

The design of two-dimensional periodic structures at the nanoscale has renewed attention for band structure engineering. Here, we investigate the nanoperforation of InGaAs quantum wells epitaxially grown on InP substrates using high-resolution e-beam lithography and highly plasma based dry etching. We report on the fabrication of a honeycomb structure with an effective lattice constant down to 23 nm by realising triangular antidot lattice with an ultimate periodicity of 40 nm in a 10 nm thick InGaAs quantum well on a p-type InP. The quality of the honeycomb structures is discussed in detail, and calculations show the possibility to measure Dirac physics in these type of samples. Based on the statistical analysis of the fluctuations in pore size and periodicity, calculations of the band structure are performed to assess the robustness of the Dirac cones with respect to distortions of the honeycomb lattice.

2.
Nano Lett ; 17(9): 5238-5243, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28805396

RESUMO

Self-assembled nanocrystal solids show promise as a versatile platform for novel optoelectronic materials. Superlattices composed of a single layer of lead-chalcogenide and cadmium-chalcogenide nanocrystals with epitaxial connections between the nanocrystals, present outstanding questions to the community regarding their predicted band structure and electronic transport properties. However, the as-prepared materials are intrinsic semiconductors; to occupy the bands in a controlled way, chemical doping or external gating is required. Here, we show that square superlattices of PbSe nanocrystals can be incorporated as a nanocrystal monolayer in a transistor setup with an electrolyte gate. The electron (and hole) density can be controlled by the gate potential, up to 8 electrons per nanocrystal site. The electron mobility at room temperature is 18 cm2/(V s). Our work forms a first step in the investigation of the band structure and electronic transport properties of two-dimensional nanocrystal superlattices with controlled geometry, chemical composition, and carrier density.

3.
Phys Chem Chem Phys ; 17(42): 28193-9, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25821082

RESUMO

This study describes the ageing of bimetallic nanoparticles using a kinetic mean-field method which provides the time evolution of the concentration for each site. We consider the cuboctahedron of 309 atoms in the Cu-Ag system, which is a prototype of systems with a strong tendency to phase separate. Starting from an initial homogenous configuration, we investigate the evolution towards the equilibrium configuration at different temperatures. Surprisingly, at low temperature, the kinetics exhibits a first transition towards an onion-like configuration followed by a second transition towards the equilibrium core-shell configuration. An analysis of the kinetics of the formation and then of the dissolution of the onion-like structure allows us to identify the main paths of the kinetic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA