Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 34(4): 758-769, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30838420

RESUMO

STUDY QUESTION: What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-implantation outcomes in vitro? STUDY ANSWER: The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a 0% false positive and false negative rate. WHAT IS ALREADY KNOWN: Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a proportion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes. Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development. STUDY DESIGN, SIZE, DURATION: A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73). Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26 were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent trophectoderm (TE) biopsy prior to extended culture. PARTICIPANTS/MATERIALS, SETTING, METHODS: We applied established culture protocols to generate embryo outgrowths. Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more portions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing (NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later development. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with trisomies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concordance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered, accuracy increases to 100%, with a 0% false positive and false negative rate. LIMITATIONS REASONS FOR CAUTION: The inherent limitations of extended in vitro culture, particularly when modelling critical developmental milestones, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings echo current prenatal testing data and support the high clinical predictive value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing technical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism. STUDY FUNDING, COMPETING INTEREST(S): This research is funded by the Ghent University Special Research Fund (BOF01D08114) awarded to M.P., the Research Foundation-Flanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-van't Hoogerhuijs Stichting awarded to S.M.C.d.S.L. We thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aneuploidia , Técnicas de Cultura Embrionária/métodos , Implantação do Embrião/genética , Testes Genéticos/métodos , Mosaicismo/embriologia , Diagnóstico Pré-Implantação/métodos , Adulto , Biópsia/métodos , Blastocisto/metabolismo , Blastocisto/patologia , Confiabilidade dos Dados , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imagem Óptica , Gravidez , Adulto Jovem
2.
Mol Hum Reprod ; 24(11): 543-555, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239859

RESUMO

STUDY QUESTION: What are the transcriptional changes occurring during the human embryonic stem cell (hESC) derivation process, from the inner cell mass (ICM) to post-ICM intermediate stage (PICMI) to hESC stage, that have downstream effects on pluripotency states and differentiation? SUMMARY ANSWER: We reveal that although the PICMI is transcriptionally similar to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell (PGC) markers, dependence on leukemia inhibitory factor (LIF) signaling, upregulation of naïve pluripotency-specific signaling networks and appears to be an intermediate switching point from naïve to primed pluripotency. WHAT IS KNOWN ALREADY: It is currently known that the PICMI exhibits markers of early and late-epiblast stage. It is suggested that hESCs acquire primed pluripotency features due to the upregulation of post-implantation genes in the PICMI which renders them predisposed towards differentiation cues. Despite this current knowledge, the transcriptional landscape changes during hESC derivation from ICM to hESC and the effect of PICMI on pluripotent state is still not well defined. STUDY DESIGN, SIZE, DURATION: To gain insight into the signaling mechanisms that may govern the ICM to PICMI to hESC transition, comparative RNA sequencing (RNA-seq) analysis was performed on preimplantation ICMs, PICMIs and hESCs in biological and technical triplicates (n = 3). PARTICIPANTS/MATERIALS, SETTING, AND METHODS: Primed hESCs (XX) were maintained in feeder-free culture conditions on Matrigel for two passages and approximately 50 cells were collected in biological and technical triplicates (n = 3). For ICM sample collection, Day 3, frozen-thawed human embryos were cultured up to day five blastocyst stage and only good quality blastocysts were subjected to laser-assisted micromanipulation for ICM collection (n = 3). Next, day six expanded blastocysts were cultured on mouse embryonic fibroblasts and manual dissection was performed on the PICMI outgrowths between post-plating Day 6 and Day 10 (n = 3). Sequencing of these samples was performed on NextSeq500 and statistical analysis was performed using edgeR (false discovery rate (FDR) < 0.05). MAIN RESULTS AND THE ROLE OF CHANCE: Comparative RNA-seq data analysis revealed that 634 and 560 protein-coding genes were significantly up and downregulated in hESCs compared to ICM (FDR < 0.05), respectively. Upon ICM to PICMI transition, 471 genes were expressed significantly higher in the PICMI compared to ICM, while 296 genes were elevated in the ICM alone (FDR < 0.05). Principle component analysis showed that the ICM was completely distinct from the PICMI and hESCs while the latter two clustered in close proximity to each other. Increased expression of E-CADHERIN1 (CDH1) in ICM and intermediate levels in the PICMI was observed, while CDH2 was higher in hESCs, suggesting a role of extracellular matrix components in facilitating pluripotency transition during hESC derivation. The PICMI also showed regulation of naïve-specific LIF and bone morphogenetic protein signaling, differential regulation of primed pluripotency-specific fibroblast growth factor and NODAL signaling pathway components, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTORC), as well as predisposition towards the germ cell lineage, further confirmed by gene ontology analysis. Hence, the data suggest that the PICMI may serve as an intermediate pluripotency stage which, when subjected to an appropriate culture niche, could aid in enhancing naïve hESC derivation and germ cell differentiation efficiency. LARGE-SCALE DATA: Gene Expression Omnibus (GEO) Accession number GSE119378. LIMITATIONS, REASONS FOR CAUTION: Owing to the limitation in sample availability, the sex of ICM and PICMI have not been taken into consideration. Obtaining cells from the ICM and maintaining them in culture is not feasible as it will hamper the formation of PICMI and hESC derivation. Single-cell quantitative real-time PCR on low ICM and PICMI cell numbers, although challenging due to limited availability of human embryos, will be advantageous to further corroborate the RNA-seq data on transcriptional changes during hESC derivation process. WIDER IMPLICATIONS OF THE FINDINGS: We elucidate the dynamics of transcriptional network changes from the naïve ICM to the intermediate PICMI stage and finally the primed hESC lines. We provide an in-depth understanding of the PICMI and its role in conferring the type of pluripotent state which may have important downstream effects on differentiation, specifically towards the PGC lineage. This knowledge contributes to our limited understanding of the true nature of the human pluripotent state in vitro. STUDY FUNDING/COMPETING INTEREST(S): This research is supported by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds University Ghent (BOF GOA 01G01112).The authors declare no conflict of interest.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Blastocisto/metabolismo , Linhagem Celular , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Componente Principal , Análise de Sequência de RNA
3.
Hum Reprod ; 33(7): 1342-1354, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29796631

RESUMO

STUDY QUESTION: To what extent does a trophectoderm (TE) biopsy reliably reflect the chromosomal constitution of the inner cell mass (ICM) in human blastocysts? SUMMARY ANSWER: Concordance between TE and ICM was established in 62.1% of the embryos analysed. WHAT IS KNOWN ALREADY: Next generation sequencing (NGS) platforms have recently been optimised for preimplantation genetic testing for aneuploidies (PGT-A). However, higher sensitivity has led to an increase in reports of chromosomal mosaicism within a single TE biopsy. This has raised substantial controversy surrounding the prevalence of mosaicism in human blastocysts and the clinical implications of heterogeneity between the TE and ICM. STUDY DESIGN, SIZE, DURATION: To define the distribution and rate of mosaicism in human blastocysts, we assessed chromosomal profiles of the ICM and multiple TE portions obtained from the same embryo. We evaluated donated embryos with an unknown chromosomal profile (n = 34), as well as PGT-A blastocysts, previously diagnosed as abnormal or mosaic (n = 24). Our intra-embryo comparison included a total of 232 samples, obtained from 58 embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS: Four embryo samples, including the ICM and three distinct TE portions, were acquired from good quality blastocysts by micromanipulation. Whole genome amplification (WGA), followed by NGS was performed on all embryo segments. Profiles were compared between samples from the same embryo, while the results from pretested blastocysts were further correlated to the original report. The embryos investigated in our untested group were obtained from good prognosis patients (n = 25), with maternal age ranging from 23 to 39 years. For the pretested embryo group, maternal age ranged from 23 to 40 years (n = 18). MAIN RESULTS AND THE ROLE OF CHANCE: We uncover chromosomal mosaicism, involving both numerical and structural aberrations, in up to 37.9% of the blastocysts analysed. Within the untested group, the overall concordance between the ICM and all TE portions was 55.9%. A normal ICM was detected in 20.6% of blastocysts for which at least one TE portion showed a chromosomal aberration. Conversely, 17.6% of embryos presented with mosaic or uniform abnormalities within the ICM, while showing normal or mosaic TE profiles. For the pretested blastocysts, the overall concordance between the ICM and all TE samples was 70.8%. However, 50% of embryos previously diagnosed with mosaicism did not confirm the original diagnosis. Notably, 31.3% of embryos with a mosaic aberration reported in the original TE biopsy, revealed a euploid profile in the ICM and all three TE samples. Taken together, concordance between the ICM and all TE portions was established in 62.1% of blastocysts, across both embryo groups. Finally, we could not observe a significant effect of age on embryo mosaicism (P = 0.101 untested group; P = 0.7309 pretested group). Similarly, ICM and TE quality were not found to affect the occurrence of chromosomal mosaicism (P = 0.718 and P = 0.462 untested group; P = 1.000 and P = 0.2885 pretested group). LARGE SCALE DATA: All data that support the findings of this study are available online in Vivar (http://cmgg.be/vivar) upon request. LIMITATIONS, REASONS FOR CAUTION: Evaluating biological variation in some instances remains challenging. The technological limitations of sampling mitotic errors that lead to mosaicism, as well as WGA artefacts, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our results highlight the complex nature of genetic (in)stability during early ontogenesis and indicate that blastocysts harbour a higher rate of chromosomal mosaicism than may have been anticipated. Moreover, our findings reveal an overall high diagnostic sensitivity and relatively low specificity in the context of PGT-A. This suggests that a considerable proportion of embryos are potentially being classified as clinically unsuitable. Ultimately, more precise quantification will benefit the clinical management of embryo mosaicism. STUDY FUNDING/COMPETING INTEREST(S): M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). J.T. and L.D. are supported by the agency for innovation through science (131673, 141441). B.H. and this research are supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF15/GOA/011). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Blastocisto , Testes Genéticos , Mosaicismo , Diagnóstico Pré-Implantação/métodos , Adulto , Desenvolvimento Embrionário/fisiologia , Feminino , Humanos , Idade Materna , Gravidez , Adulto Jovem
4.
Nat Commun ; 8: 15055, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429706

RESUMO

Until recently, human embryonic stem cells (hESCs) were shown to exist in a state of primed pluripotency, while mouse embryonic stem cells (mESCs) display a naive or primed pluripotent state. Here we show the rapid conversion of in-house-derived primed hESCs on mouse embryonic feeder layer (MEF) to a naive state within 5-6 days in naive conversion media (NCM-MEF), 6-10 days in naive human stem cell media (NHSM-MEF) and 14-20 days using the reverse-toggle protocol (RT-MEF). We further observe enhanced unbiased lineage-specific differentiation potential of naive hESCs converted in NCM-MEF, however, all naive hESCs fail to differentiate towards functional cell types. RNA-seq analysis reveals a divergent role of PI3K/AKT/mTORC signalling, specifically of the mTORC2 subunit, in the different naive hESCs. Overall, we demonstrate a direct evaluation of several naive culture conditions performed in the same laboratory, thereby contributing to an unbiased, more in-depth understanding of different naive hESCs.


Assuntos
Meios de Cultura/farmacologia , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultura/química , Células Alimentadoras/química , Células Alimentadoras/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sequência de RNA , Transdução de Sinais
5.
Methods Inf Med ; 49(5): 492-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20582385

RESUMO

BACKGROUND: Work-related musculoskeletal disorders (MSD) of the neck and the shoulders are a growing problem in society. An interesting pattern of spontaneous muscle activity, the firing of a single motor unit, in the trapezius muscle is observed during a laboratory study in a rest state or a state with a mental load. OBJECTIVE: In this study, we report on the finding of the single motor unit firing and we present a detection algorithm to localize these single motor unit firings. METHODS: A spike train detection algorithm, using a nonlinear energy operator and correlation, is presented to detect burst of highly correlated, high energetic spike-like segments. RESULTS: This single motor unit was visible in 65% of the test subjects on one or both trapezius muscles although there was no change in posture of the test subjects. All the segments in the data that were determined as single motor unit firings were detected by the algorithm. DISCUSSION: The physiological meaning of this firing pattern is a very low and subconscious contraction of the muscle. A long-term contraction could lead to the exhaustion of the muscle fibers, thus resulting in musculoskeletal disorders. The detection algorithm is able to localize this phenomenon in a sEMG measurement. The ability of detecting these firings is helpful in the research of its origin. CONCLUSION: The detection algorithm can be used to gain insight in the physiological origin of this phenomenon. In addition, the algorithm can also be used in a biofeedback system to warn the user for this undesired contraction to prevent MSD.


Assuntos
Algoritmos , Eletromiografia , Músculo Esquelético/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia , Valores de Referência , Ombro/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA