Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(7): e4970, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38618176

RESUMO

Periodontal disease is characterized by the destruction of the hard and soft tissues comprising the periodontium. This destruction translates to a degradation of the extracellular matrices (ECM), mediated by bacterial proteases, host-derived matrix metalloproteinases (MMPs), and other proteases released by host tissues and immune cells. Bacterial pathogens interact with host tissue, triggering adverse cellular functions, including a heightened immune response, tissue destruction, and tissue migration. The oral spirochete Treponema denticola is highly associated with periodontal disease. Dentilisin, a T. denticola outer membrane protein complex, contributes to the chronic activation of pro-MMP-2 in periodontal ligament (PDL) cells and triggers increased expression levels of activators and effectors of active MMP-2 in PDL cells. Despite these advances, no mechanism for dentilisin-induced MMP-2 activation or PDL cytopathic behaviors leading to disease is known. Here, we describe a method for purification of large amounts of the dentilisin protease complex from T. denticola and demonstrate its ability to activate MMP-2, a key regulator of periodontal tissue homeostasis. The T. denticola dentilisin and MMP-2 activation model presented here may provide new insights into the dentilisin protein and identify potential therapeutic targets for further research. Key features • This protocol builds upon a method described by Cunningham et al. [1] for selective release of Treponema outer membrane proteins. • We adapted the protocol for the purification of biologically active, detergent-stable outer membrane protein complexes from large batch cultures of T. denticola. • The protocol involves large-scale preparative electrophoresis using a Model 491 Prep Cell. • We then use gelatin zymography to demonstrate the activity of the purified dentilisin complex by its ability to activate matrix metalloproteinase 2 (MMP-2).

2.
PLoS Pathog ; 17(7): e1009311, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34255809

RESUMO

Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Doenças Periodontais , Infecções por Treponema/metabolismo , Fatores de Virulência/metabolismo , Células Cultivadas , Humanos , Metaloproteinases da Matriz/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Periodontais/metabolismo , Doenças Periodontais/microbiologia , Doenças Periodontais/patologia , Ligamento Periodontal , Fator de Transcrição Sp1/metabolismo , Receptor 2 Toll-Like/metabolismo , Treponema denticola , Infecções por Treponema/patologia , Regulação para Cima
3.
Front Cell Infect Microbiol ; 11: 671968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094999

RESUMO

The periodontal complex consists of the periodontal ligament (PDL), alveolar bone, and cementum, which work together to turn mechanical load into biological responses that are responsible for maintaining a homeostatic environment. However oral microbes, under conditions of dysbiosis, may challenge the actin dynamic properties of the PDL in the context of periodontal disease. To study this process, we examined host-microbial interactions in the context of the periodontium via molecular and functional cell assays and showed that human PDL cell interactions with Treponema denticola induce actin depolymerization through a novel actin reorganization signaling mechanism. This actin reorganization mechanism and loss of cell adhesion is a pathological response characterized by an initial upregulation of RASA4 mRNA expression resulting in an increase in matrix metalloproteinase-2 activity. This mechanism is specific to the T. denticola effector protein, dentilisin, thereby uncovering a novel effect for Treponema denticola-mediated RASA4 transcriptional activation and actin depolymerization in primary human PDL cells.


Assuntos
Metaloproteinase 2 da Matriz , Treponema denticola , Fibroblastos/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Ativação Transcricional , Regulação para Cima , Proteínas Ativadoras de ras GTPase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...