Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766118

RESUMO

BACKGROUND: Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. METHODS: We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on systematic assessment of the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary finding genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were also assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. RESULTS: The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance from samples in the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, 0.9% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. CONCLUSIONS: A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.

2.
Eur J Hum Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565640

RESUMO

Currently, there are no widely accepted recommendations in the genomics field guiding the return of incidental findings (IFs), defined here as unexpected results that are unrelated to the indication for testing. Consequently, reporting policies for IFs among laboratories offering genomic testing are variable and may lack transparency. Herein we describe a framework developed to guide the evaluation and return of IFs encountered in probands undergoing clinical genome sequencing (cGS). The framework prioritizes clinical significance and actionability of IFs and follows a stepwise approach with stopping points at which IFs may be recommended for return or not. Over 18 months, implementation of the framework in a clinical laboratory facilitated the return of actionable IFs in 37 of 720 (5.1%) individuals referred for cGS, which is reduced to 3.1% if glucose-6-phosphate dehydrogenase (G6PD) deficiency is excluded. This framework can serve as a model to standardize reporting of IFs identified during genomic testing.

3.
medRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38585998

RESUMO

Over 30 international research studies and commercial laboratories are exploring the use of genomic sequencing to screen apparently healthy newborns for genetic disorders. These programs have individualized processes for determining which genes and genetic disorders are queried and reported in newborns. We compared lists of genes from 26 research and commercial newborn screening programs and found substantial heterogeneity among the genes included. A total of 1,750 genes were included in at least one newborn genome sequencing program, but only 74 genes were included on >80% of gene lists, 16 of which are not associated with conditions on the Recommended Uniform Screening Panel. We used a linear regression model to explore factors related to the inclusion of individual genes across programs, finding that a high evidence base as well as treatment efficacy were two of the most important factors for inclusion. We applied a machine learning model to predict how suitable a gene is for newborn sequencing. As knowledge about and treatments for genetic disorders expand, this model provides a dynamic tool to reassess genes for newborn screening implementation. This study highlights the complex landscape of gene list curation among genomic newborn screening programs and proposes an empirical path forward for determining the genes and disorders of highest priority for newborn screening programs.

5.
NPJ Genom Med ; 9(1): 15, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409289

RESUMO

Early use of genome sequencing (GS) in the diagnostic odyssey can reduce suffering and improve care, but questions remain about which patient populations are most amenable to GS as a first-line diagnostic test. To address this, the Medical Genome Initiative conducted a literature review to identify appropriate clinical indications for GS. Studies published from January 2011 to August 2022 that reported on the diagnostic yield (DY) or clinical utility of GS were included. An exploratory meta-analysis using a random effects model evaluated DY based on cohort size and diagnosed cases per cohort. Seventy-one studies met inclusion criteria, comprising over 13,000 patients who received GS in one of the following settings: hospitalized pediatric patients, pediatric outpatients, adult outpatients, or mixed. GS was the first-line test in 38% (27/71). The unweighted mean DY of first-line GS was 45% (12-73%), 33% (6-86%) in cohorts with prior genetic testing, and 33% (9-60%) in exome-negative cohorts. Clinical utility was reported in 81% of first-line GS studies in hospitalized pediatric patients. Changes in management varied by cohort and underlying molecular diagnosis (24-100%). To develop evidence-informed points to consider, the quality of all 71 studies was assessed using modified American College of Radiology (ACR) criteria, with five core points to consider developed, including recommendations for use of GS in the N/PICU, in lieu of sequential testing and when disorders with substantial allelic heterogeneity are suspected. Future large and controlled studies in the pediatric and adult populations may support further refinement of these recommendations.

6.
Am J Med Genet A ; 194(3): e63462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929330

RESUMO

We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.


Assuntos
Transtorno do Espectro Autista , Distrofias Musculares , Distrofia Muscular de Duchenne , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Sequência de Bases , Inversão Cromossômica/genética , Distrofina/genética , Distrofias Musculares/genética , Distrofia Muscular de Duchenne/genética , Fatores do Domínio POU/genética
7.
Am J Med Genet A ; 191(12): 2831-2836, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551848

RESUMO

Copy number variants that duplicate distal upstream enhancer elements of the SOX9 gene cause 46,XX testicular differences of sex development (DSD) which is characterized by a 46,XX karyotype in an individual presenting with either ambiguous genitalia or genitalia with varying degrees of virilization, including those resembling typical male genitalia. Reported duplications in this region range in size from 24 to 780 kilobases (kb). Here we report a family with two affected individuals, the proband and his maternal uncle, harboring a 3.7 kb duplication of a SOX9 enhancer identified by clinical genome sequencing. Prior fluorescence in situ hybridization (FISH) for SRY and a multi-gene panel for ambiguous genitalia were non-diagnostic. The unaffected mother also carries this duplication, consistent with previously described incomplete penetrance. To our knowledge, this is the smallest duplication identified to-date, most of which resides in a 5.2 kb region that has been previously shown to possess enhancer activity that promotes the expression of SOX9. The duplication was confirmed by quantitative-PCR and shown to be in tandem by bidirectional Sanger sequencing breakpoint analysis. This finding highlights the importance of non-coding variant interrogation in suspected genetic disorders.


Assuntos
Transtornos do Desenvolvimento Sexual , Sequências Reguladoras de Ácido Nucleico , Feminino , Humanos , Masculino , Hibridização in Situ Fluorescente , Transtornos do Desenvolvimento Sexual/genética , Mães , Desenvolvimento Sexual , Fatores de Transcrição SOX9/genética
8.
Cell Genom ; 3(2): 100258, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819666

RESUMO

Current standards in clinical genetics recognize the need to establish the validity of gene-disease relationships as a first step in the interpretation of sequence variants. We describe our experience incorporating the ClinGen Gene-Disease Clinical Validity framework in our interpretation and reporting workflow for a clinical genome sequencing (cGS) test for individuals with rare and undiagnosed genetic diseases. This "reactive" gene curation is completed upon identification of candidate variants during active case analysis and within the test turn-around time by focusing on the most impactful evidence and taking advantage of the broad applicability of the framework to cover a wide range of disease areas. We demonstrate that reactive gene curation can be successfully implemented in support of cGS in a clinical laboratory environment, enabling robust clinical decision making and allowing all variants to be fully and appropriately considered and their clinical significance confidently interpreted.

10.
Ann Neurol ; 92(5): 895-901, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35947102

RESUMO

NOTCH1 belongs to the NOTCH family of proteins that regulate cell fate and inflammatory responses. Somatic and germline NOTCH1 variants have been implicated in cancer, Adams-Oliver syndrome, and cardiovascular defects. We describe 7 unrelated patients grouped by the presence of leukoencephalopathy with calcifications and heterozygous de novo gain-of-function variants in NOTCH1. Immunologic profiling showed upregulated CSF IP-10, a cytokine secreted downstream of NOTCH1 signaling. Autopsy revealed extensive leukoencephalopathy and microangiopathy with vascular calcifications. This evidence implicates that heterozygous gain-of-function variants in NOTCH1 lead to a chronic central nervous system (CNS) inflammatory response resulting in a calcifying microangiopathy with leukoencephalopathy. ANN NEUROL 2022;92:895-901.


Assuntos
Displasia Ectodérmica , Leucoencefalopatias , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Quimiocina CXCL10 , Sistema Nervoso Central/metabolismo
11.
Am J Med Genet A ; 188(9): 2825-2831, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35670385

RESUMO

PERCHING syndrome is a rare multisystem developmental disorder caused by autosomal recessive (AR) variants (truncating and missense) in the Kelch-like family member 7 gene (KLHL7). We report the first phenotypic and molecular description of PERCHING syndrome in a patient from Central Africa. The patient presented multiple dysmorphic features in addition to neurological, respiratory, gastroenteric, and dysautonomic disorders. Clinical Whole Genome Sequencing in the proband and his mother identified two novel heterozygous variants in the KLHL7 gene, including a maternally inherited intronic variant (NM_001031710.2:c.793 + 5G > C) classified as Variant of Uncertain Significance and a frameshift stop gain variant (NM_001031710.2:c.944delG; p.Ser315ThrfsTer23) of unknown inheritance classified as likely pathogenic. Although the diagnosis was only evoked after genomic testing, the review of published patients suggests that this disease could be clinically recognizable and maybe considered as an encephalopathy. Our report will allow expanding the phenotypic and molecular spectrum of Perching syndrome.


Assuntos
Códon sem Sentido , Heterozigoto , Humanos , Mutação , Sequenciamento Completo do Genoma
12.
NPJ Genom Med ; 7(1): 27, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395838

RESUMO

Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.

13.
Neurology ; 98(11): 440-445, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35110381

RESUMO

ATP1A1 encodes the α1 subunit of the sodium-potassium ATPase, an electrogenic cation pump highly expressed in the nervous system. Pathogenic variants in other subunits of the same ATPase, encoded by ATP1A2 or ATP1A3, are associated with syndromes such as hemiplegic migraine, dystonia, or cerebellar ataxia. Worldwide, only 16 families have been reported carrying pathogenic ATP1A1 variants to date. Associated phenotypes are axonal neuropathies, spastic paraplegia, and hypomagnesemia with seizures and intellectual disability. By whole exome or genome sequencing, we identified 5 heterozygous ATP1A1 variants, c.674A>G;p.Gln225Arg, c.1003G>T;p.Gly335Cys, c.1526G>A;p.Gly509Asp, c.2152G>A;p.Gly718Ser, and c.2768T>A;p.Phe923Tyr, in 5 unrelated children with intellectual disability, spasticity, and peripheral, motor predominant neuropathy. Additional features were sensory loss, sleep disturbances, and seizures. All variants occurred de novo and are absent from control populations (MAF GnomAD = 0). Affecting conserved amino acid residues and constrained regions, all variants have high pathogenicity in silico prediction scores. In HEK cells transfected with ouabain-insensitive ATP1A1 constructs, cell viability was significantly decreased in mutants after 72h treatment with the ATPase inhibitor ouabain, demonstrating loss of ATPase function. Replicating the haploinsufficiency mechanism of disease with a gene-specific assay provides pathogenicity information and increases certainty in variant interpretation. This study further expands the genotype-phenotype spectrum of ATP1A1.


Assuntos
Deficiência Intelectual , Enxaqueca com Aura , Humanos , Deficiência Intelectual/genética , Enxaqueca com Aura/genética , Mutação/genética , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética , Síndrome
14.
Lancet Neurol ; 21(3): 234-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182509

RESUMO

BACKGROUND: Repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. METHODS: We retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013-17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. FINDINGS: The diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2-99·0) and 99·6% specificity (99·1-99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). INTERPRETATION: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. FUNDING: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina.


Assuntos
Expansão das Repetições de DNA , Medicina Estatal , Criança , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Reino Unido , Sequenciamento Completo do Genoma/métodos
15.
Hum Mutat ; 43(6): 765-771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181961

RESUMO

The use of whole-genome sequencing (WGS) has accelerated the pace of gene discovery and highlighted the need for open and collaborative data sharing in the search for novel disease genes and variants. GeneMatcher (GM) is designed to facilitate connections between researchers, clinicians, health-care providers, and others to help in the identification of additional patients with variants in the same candidate disease genes. The Illumina Clinical Services Laboratory offers a WGS test for patients with suspected rare and undiagnosed genetic disease  and regularly submits potential candidate genes to GM to strengthen gene-disease relationships. We describe our experience with GM, including criteria for evaluation of candidate genes, and our workflow for the submission and review process. We have made 69 submissions, 36 of which are currently active. Ten percent of submissions have resulted in publications, with an additional 14 submissions part of ongoing collaborations and expected to result in a publication.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Laboratórios Clínicos , Humanos , Sequenciamento Completo do Genoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-34737199

RESUMO

Undiagnosed genetic disease imposes a significant burden on families and health-care resources, especially in cases with a complex phenotype. Here we present a child with suspected leukodystrophy in the context of additional features, including hearing loss, clinodactyly, rotated thumbs, tapered fingers, and simplified palmar crease. Trio genome sequencing (GS) identified three molecular diagnoses in this individual: compound heterozygous missense variants associated with polymerase III (Pol III)-related leukodystrophy, a 4-Mb de novo copy-number loss including the MYCN gene associated with Feingold syndrome, and a mosaic single-nucleotide variant associated with COL2A1-related disorders. These variants fully account for the individual's features, but also illustrate the potential for superimposed and unclear contributions of multiple diagnoses to an individual's overall presentation. This report demonstrates the advantage of GS in detection of multiple variant types, including low-level mosaic variants, and emphasizes the need for comprehensive genetic analysis and detailed clinical phenotyping to provide individuals and their families with the maximum benefit for clinical care and genetic counseling.


Assuntos
Deficiência Intelectual , Deformidades Congênitas dos Membros , Microcefalia , Fístula Traqueoesofágica , Colágeno Tipo II , Pálpebras/anormalidades , Humanos
18.
NPJ Genom Med ; 6(1): 98, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811359

RESUMO

We characterized US pediatric patients with clinical indicators of genetic diseases, focusing on the burden of disease, utilization of genetic testing, and cost of care. Curated lists of diagnosis, procedure, and billing codes were used to identify patients with clinical indicators of genetic disease in healthcare claims from Optum's de-identified Clinformatics® Database (13,076,038 unique patients). Distinct cohorts were defined to represent permissive and conservative estimates of the number of patients. Clinical phenotypes suggestive of genetic diseases were observed in up to 9.4% of pediatric patients and up to 44.7% of critically-ill infants. Compared with controls, patients with indicators of genetic diseases had higher utilization of services (e.g., mean NICU length of stay of 31.6d in a cohort defined by multiple congenital anomalies or neurological presentations compared with 10.1d for patients in the control population (P < 0.001)) and higher overall costs. Very few patients received any genetic testing (4.2-8.4% depending on cohort criteria). These results highlight the substantial proportion of the population with clinical features associated with genetic disorders and underutilization of genetic testing in these populations.

19.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570182

RESUMO

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Assuntos
Doença Aguda , Doenças Genéticas Inatas , Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde
20.
Genet Med ; 23(12): 2352-2359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446925

RESUMO

PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.


Assuntos
Leucoencefalopatias , Estudos Transversais , Progressão da Doença , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...