Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(18): 8637-8642, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37724790

RESUMO

Achieving low-threshold infrared stimulated emission in solution-processed quantum dots is critical to enable real-life applications including photonic integrated circuits (PICs), LIDAR application, and optical telecommunication. However, realization of low threshold infrared gain is fundamentally challenging due to high degeneracy of the first emissive state (e.g., 8-fold) and fast Auger recombination. In this Letter, we demonstrate ultra-low-threshold infrared stimulated emission with an onset of 110 µJ cm-2 employing cascade charge transfer (CT) in Pb-chalcogenide colloidal quantum dot (CQD) solids. In doing so, we investigate this idea in two different architectures including a mixture of multiband gap CQDs and a layer-by-layer (LBL) configuration. Using transient absorption spectroscopy, we show ultrafast cascade CT from large band gap PbS CQD to small band gap PbS/PbSSe core/shell CQDs in LBL (∼2 ps) and mixture (∼9 ps) configurations. These results indicate the feasibility of using cascade CT as an efficient method to reduce the optical gain threshold in CQD solid films.

2.
Adv Mater ; 35(1): e2207678, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36333885

RESUMO

The use of colloidal quantum dots (CQDs) as a gain medium in infrared laser devices has been underpinned by the need for high pumping intensities, very short gain lifetimes, and low gain coefficients. Here, PbS/PbSSe core/alloyed-shell CQDs are employed as an infrared gain medium that results in highly suppressed Auger recombination with a lifetime of 485 ps, lowering the amplified spontaneous emission (ASE) threshold down to 300 µJ cm-2 , and showing a record high net modal gain coefficient of 2180 cm-1 . By doping these engineered core/shell CQDs up to nearly filling the first excited state, a significant reduction of optical gain threshold is demonstrated, measured by transient absorption, to an average-exciton population-per-dot 〈Nth 〉g of 0.45 due to bleaching of the ground state absorption. This in turn have led to a fivefold reduction in ASE threshold at 〈Nth 〉ASE  = 0.70 excitons-per-dot, associated with a gain lifetime of 280 ps. Finally, these heterostructured QDs are used to achieve near-infrared lasing at 1670 nm at a pump fluences corresponding to sub-single-exciton-per-dot threshold (〈Nth 〉Las  = 0.87). This work brings infrared CQD lasing thresholds on par to their visible counterparts, and paves the way toward solution-processed infrared laser diodes.

3.
Adv Sci (Weinh) ; 9(20): e2200637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35508607

RESUMO

Developing high performance, low-cost solid-state light emitters in the telecom wavelength bandwidth is of paramount importance for infrared light-based communications. Colloidal quantum dot (CQD) based light emitting diodes (LEDs) have shown tremendous advances in recent times through improvement in synthesis chemistry, surface property, and device structures. Despite the tremendous advancements of CQD based LEDs in the visible range with efficiency reaching theoretical limits, their short-wave infrared (SWIR) counterparts mainly based on lead chalcogenide CQDs, have shown lower performance (≈8%). Here the authors report on highly efficient SWIR CQD LEDs with a recorded EQE of 11.8% enabled by the use of a binary CQD matrix comprising QD populations of different bandgaps at the emission wavelength of 1550 nm. By further optimizing the optical out-coupling via the use of a hemispherical lens to reduce optical waveguide loss, the EQE of the LED increased to 18.6%. The CQD LED has an electrical bandwidth of 2 MHz, which motivated them to demonstrate its use in the first SWIR free-space optical transmission link based entirely on CQD technology (photodetector and light emitter) opening a new window of applications for CQD optoelectronics.

4.
Adv Mater ; 34(3): e2107532, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762320

RESUMO

Pb-chalcogenide colloidal quantum dots (CQDs) are attractive materials to be used as tuneable laser media across the infrared spectrum. However, excessive nonradiative Auger recombination due to the presence of trap states outcompetes light amplification by rapidly annihilating the exciton population, leading to high gain thresholds. Here, a binary blend is employed of CQDs and ZnO nanocrystals in order to passivate the in-gap trap states of PbS-CQD gain medium. Using transient absorption, a fivefold increase is measured in Auger lifetime demonstrating the suppression of trap-assisted Auger recombination. By doing so, a twofold reduction is achieved in amplified spontaneous emission (ASE) threshold. Finally, by integrating the proposed binary blend to a distributed feedback (DFB) resonator, single-mode lasing emission is demonstrated at 1650 nm with a linewidth of 1.23 nm (0.62 meV), operating at a low lasing threshold of ≈385 µJ cm-2 . The Auger suppression in this system has allowed to achieve unprecedented lasing emission stability for a CQD laser with recorded continuous operation of 5 h at room temperature and ambient conditions.

5.
J Invasive Cardiol ; 33(7): E497-E505, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34224379

RESUMO

OBJECTIVE: We sought to investigate mid-term clinical outcomes and identify risk factors in one of the largest comprehensive series reported of femoro-ilio-caval (FIC) vein stent placement. BACKGROUND: Endovascular intervention with balloon angioplasty and stenting of the iliac and common femoral veins has become first-line treatment for symptomatic deep venous outflow obstruction. METHODS: We conducted a single-center, retrospective analysis of 180 patients who underwent FIC stent implantation between May 2017 and May 2019; 327 procedures were performed. Our primary objective was to evaluate a composite of stent thrombosis and stent restenosis. Secondary outcomes included individual predictors of in-stent restenosis (ISR) and in-stent thrombosis (IST), primary and secondary patency, access-site complications, major bleeding, pulmonary embolism, cardiovascular death, any death, intracranial bleeding, all-cause mortality, and components of major adverse cardiac and cerebrovascular events (MACCE) in a 24-month period. RESULTS: A total of 327 procedures were performed for 180 patients. At 2-year follow up, 78.3% of cases remained free of any complication. Primary outcome occurred in 53 procedures (16.2%) and was highest at early (<30 days) follow-up. Primary patency at 2-year follow-up was 78.43%. There were no deaths, 1 patient (0.3%) had a subdural hematoma, and 3 patients (0.9%) had MACCE. Age and post-thrombotic syndrome (PTS) were significant predictors of primary outcome. PTS and Venous Clinical Severity score (VCSS) ≥10 were found to have higher rates of thrombosis. Active smokers, the elderly, history of deep vein thrombosis (DVT), and VCSS ≥10 had a statistically significant elevated risk of ISR. CONCLUSION: Endovascular treatment with stent implantation for non-thrombotic iliac vein lesion and PTS is safe, with low morbidity, zero mortality, low complications, and persistent improvement of symptoms. Age and PTS were significant predictors of primary outcome.


Assuntos
Procedimentos Endovasculares , Síndrome de May-Thurner , Síndrome Pós-Trombótica , Idoso , Humanos , Veia Ilíaca/diagnóstico por imagem , Veia Ilíaca/cirurgia , Estudos Retrospectivos , Stents , Resultado do Tratamento , Grau de Desobstrução Vascular
6.
Nat Commun ; 11(1): 3305, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620749

RESUMO

Colloidal semiconductor quantum wells have emerged as a promising material platform for use in solution-processable lasers. However, applications relying on their optical gain suffer from nonradiative Auger decay due to multi-excitonic nature of light amplification in II-VI semiconductor nanocrystals. Here, we show sub-single exciton level of optical gain threshold in specially engineered CdSe/CdS@CdZnS core/crown@gradient-alloyed shell quantum wells. This sub-single exciton ensemble-averaged gain threshold of (Ng)≈ 0.84 (per particle) resulting from impeded Auger recombination, along with a large absorption cross-section of quantum wells, enables us to observe the amplified spontaneous emission starting at an ultralow pump fluence of ~ 800 nJ cm-2, at least three-folds better than previously reported values among all colloidal nanocrystals. Finally, using these gradient shelled quantum wells, we demonstrate a vertical cavity surface-emitting laser operating at a low lasing threshold of 7.5 µJ cm-2. These results represent a significant step towards the realization of solution-processable electrically-driven colloidal lasers.

7.
Biomater Sci ; 8(1): 333-341, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714542

RESUMO

In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer. Recently we have shown the use of biomimetic nanovesicles, called leukosomes, which combine both the physical and biological properties of liposomes and leukocytes, respectively, to selectively deliver drugs to the inflamed vasculature. Here we report the use of leukosomes to target and deliver doxorubicin, a model chemotherapeutic, to tumors in syngeneic murine models of breast cancer and melanoma. Exploiting the inflammatory pathway responsible for recruiting immune cells to the site of injury, leukosomes exhibited increased targeting of cancer vasculature and stroma. Furthermore, delivery of doxorubicin with leukosomes enabled significant tumor growth inhibition compared with free doxorubicin in both breast and melanoma tumors. This study demonstrates the promise of using biomimetic nanovesicles for effective cancer management in solid tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Melanoma/tratamento farmacológico , Nanopartículas/química , Animais , Materiais Biomiméticos/química , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Estimativa de Kaplan-Meier , Leucócitos/química , Lipossomos/química , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Transplante Homólogo
8.
ACS Nano ; 12(8): 8547-8554, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29965729

RESUMO

A hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS2 monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns-1. Using an Al2O3 separating layer between CdSe/CdS and MoS2 with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d-2 for the donor of CdSe/CdS NPLs and the acceptor of the MoS2 monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d-2 system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS2. This d-2 dependency results in an extraordinarily long Förster radius of ∼33 nm.

9.
Life Sci ; 171: 60-67, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28039004

RESUMO

AIMS: Reestablishment of bladder function in patients with spinal cord injury (SCI) is a clinical priority. Our objectives were to determine whether SCI-localized inhibition of purinergic P2X7 receptors (P2X7R) improve bladder function by decreasing afferent signals mediated by urothelial P2X3R. MAIN METHODS: Systemic inhibition of P2X7R may improve locomotion in rodent SCI models; however, beneficial effects on bladder function and its physiological mechanisms have not been evaluated. We designed a thermosensitive nanohydrogel (NHG) consisting of the P2X7R antagonist brilliant blue-G (BBG) loaded into silica nanoparticles, embedded with poly(d,l-lactic-co-glycolic) acid, and resuspended in 20% pluronic acid. Female Sprague-Dawley rats with a bilateral dorsal lesion at the thoracic T8/T9 region received either 100µl of an empty NHG, or a NHG containing BBG (BBG-NHG) on top of the spinal tissue. Cystometric properties, spinal immunohistochemistry for P2X7R, and bladder immunohistochemistry for P2X3R were evaluated at four weeks post-SCI. KEY FINDINGS: After SCI animals recovered hind-legs use but neurogenic bladder dysfunction remained. SCI rats treated with BBG-NHG for a period of at least two weeks post-SCI experienced fewer non-voiding contractions. The localized inhibition of P2X7R decreased microglia activation. At the lower urinary tract level we observed, unexpectedly, a concomitant reduction of urothelial P2X3 receptors, which are involved in initiation of bladder afferent transmission to start micturition. SIGNIFICANCE: Localized inhibition of P2X7R for two weeks can be associated with reduced number of microglia and attenuated bladder hyperexcitability mediated by downregulation of urothelial P2X3R in rats with neurogenic bladder dysfunction and independently of locomotor improvements.


Assuntos
Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Bexiga Urinaria Neurogênica/tratamento farmacológico , Actinas/metabolismo , Animais , Feminino , Hidrogéis , Antagonistas Purinérgicos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo
10.
J Tissue Eng ; 7: 2041731416629767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27027860

RESUMO

The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability.

11.
Biomaterials ; 82: 168-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26761780

RESUMO

Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers.


Assuntos
Materiais Biocompatíveis/toxicidade , Materiais Biomiméticos/toxicidade , Imunidade Inata/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Nanocápsulas/toxicidade , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C
12.
ACS Nano ; 8(10): 9874-83, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25119793

RESUMO

Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br-MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br-MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo.


Assuntos
Bromelaínas/química , Matriz Extracelular/química , Nanopartículas , Neoplasias/química , Dióxido de Silício/química , Difusão , Microscopia Eletrônica de Transmissão , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...