Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21285, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042930

RESUMO

Lichen symbiosis is centered around a relationship between a fungus and a photosynthetic microbe, usually a green alga. In addition to their main photosynthetic partner (the photobiont), lichen symbioses can contain additional algae present in low abundance. The biology of these algae and the way they interact with the rest of lichen symbionts remains largely unknown. Here we present the first genome sequence of a non-photobiont lichen-associated alga. Coccomyxa viridis was unexpectedly found in 12% of publicly available lichen metagenomes. With few exceptions, members of the Coccomyxa viridis clade occur in lichens as non-photobionts, potentially growing in thalli endophytically. The 45.7 Mbp genome of C. viridis was assembled into 18 near chromosome-level contigs, making it one of the most contiguous genomic assemblies for any lichen-associated algae. Comparing the C. viridis genome to its close relatives revealed the presence of traits associated with the lichen lifestyle. The genome of C. viridis provides a new resource for exploring the evolution of the lichen symbiosis, and how symbiotic lifestyles shaped evolution in green algae.


Assuntos
Ascomicetos , Clorófitas , Líquens , Líquens/genética , Líquens/microbiologia , Simbiose/genética , Ascomicetos/genética , Clorófitas/genética , Genômica , Filogenia
2.
Curr Biol ; 33(11): R512-R518, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37279685

RESUMO

Lichens are a diverse group of organisms. They are both commonly observed but also mysterious. It has long been known that lichens are composite symbiotic associations of at least one fungus and an algal or cyanobacterial partner, but recent evidence suggests that they may be much more complex. We now know that there can be many constituent microorganisms in a lichen, organized into reproducible patterns that suggest a sophisticated communication and interplay between symbionts. We feel the time is right for a more concerted effort to understand lichen biology. Rapid advances in comparative genomics and metatranscriptomic approaches, coupled with recent breakthroughs in gene functional studies, suggest that lichens may now be more tractable to detailed analysis. Here we set out some of the big questions in lichen biology, and we speculate about the types of gene functions that may be critical to their development, as well as the molecular events that may lead to initial lichen formation. We define both the challenges and opportunities in lichen biology and offer a call to arms to study this remarkable group of organisms.


Assuntos
Cianobactérias , Líquens , Fungos , Simbiose , Genômica , Filogenia
3.
Curr Biol ; 32(23): 5209-5218.e5, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423639

RESUMO

Ascomycota account for about two-thirds of named fungal species.1 Over 98% of known Ascomycota belong to the Pezizomycotina, including many economically important species as well as diverse pathogens, decomposers, and mutualistic symbionts.2 Our understanding of Pezizomycotina evolution has until now been based on sampling traditionally well-defined taxonomic classes.3,4,5 However, considerable diversity exists in undersampled and uncultured, putatively early-diverging lineages, and the effect of these on evolutionary models has seldom been tested. We obtained genomes from 30 putative early-diverging lineages not included in recent phylogenomic analyses and analyzed these together with 451 genomes covering all available ascomycete genera. We show that 22 of these lineages, collectively representing over 600 species, trace back to a single origin that diverged from the common ancestor of Eurotiomycetes and Lecanoromycetes over 300 million years BP. The new clade, which we recognize as a more broadly defined Lichinomycetes, includes lichen and insect symbionts, endophytes, and putative mycorrhizae and encompasses a range of morphologies so disparate that they have recently been placed in six different taxonomic classes. To test for shared hidden features within this group, we analyzed genome content and compared gene repertoires to related groups in Ascomycota. Regardless of their lifestyle, Lichinomycetes have smaller genomes than most filamentous Ascomycota, with reduced arsenals of carbohydrate-degrading enzymes and secondary metabolite gene clusters. Our expanded genome sample resolves the relationships of numerous "orphan" ascomycetes and establishes the independent evolutionary origins of multiple mutualistic lifestyles within a single, morphologically hyperdiverse clade of fungi.

4.
Nat Commun ; 13(1): 2634, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551185

RESUMO

Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources.


Assuntos
Ascomicetos , Líquens , Ascomicetos/metabolismo , Metabolismo dos Carboidratos , Carbono , Celulose/metabolismo
5.
New Phytol ; 234(5): 1566-1582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302240

RESUMO

Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.


Assuntos
Cianobactérias , Líquens , Biologia , Fungos , Líquens/microbiologia , Filogenia , Simbiose
6.
Mol Ecol ; 30(17): 4155-4159, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34232528

RESUMO

Lichen fungi live in a symbiotic association with unicellular phototrophs and most have no known aposymbiotic stage. A recent study in Molecular Ecology postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here, we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.


Assuntos
Genoma Mitocondrial , Líquens , Trifosfato de Adenosina , Fungos , Líquens/genética , Simbiose/genética
8.
Genome Biol Evol ; 13(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33693712

RESUMO

Basidiomycete yeasts have recently been reported as stably associated secondary fungal symbionts of many lichens, but their role in the symbiosis remains unknown. Attempts to sequence their genomes have been hampered both by the inability to culture them and their low abundance in the lichen thallus alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga). Using the lichen Alectoria sarmentosa, we selectively dissolved the cortex layer in which secondary fungal symbionts are embedded to enrich yeast cell abundance and sequenced DNA from the resulting slurries as well as bulk lichen thallus. In addition to yielding a near-complete genome of the filamentous ascomycete using both methods, metagenomes from cortex slurries yielded a 36- to 84-fold increase in coverage and near-complete genomes for two basidiomycete species, members of the classes Cystobasidiomycetes and Tremellomycetes. The ascomycete possesses the largest gene repertoire of the three. It is enriched in proteases often associated with pathogenicity and harbors the majority of predicted secondary metabolite clusters. The basidiomycete genomes possess ∼35% fewer predicted genes than the ascomycete and have reduced secretomes even compared with close relatives, while exhibiting signs of nutrient limitation and scavenging. Furthermore, both basidiomycetes are enriched in genes coding for enzymes producing secreted acidic polysaccharides, representing a potential contribution to the shared extracellular matrix. All three fungi retain genes involved in dimorphic switching, despite the ascomycete not being known to possess a yeast stage. The basidiomycete genomes are an important new resource for exploration of lifestyle and function in fungal-fungal interactions in lichen symbioses.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Genoma Fúngico , Líquens/microbiologia , Ascomicetos/química , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Basidiomycota/química , Basidiomycota/metabolismo , Parede Celular/química , Polissacarídeos Fúngicos/metabolismo , Metagenoma , Metabolismo Secundário/genética , Secretoma , Simbiose
9.
FEMS Microbiol Lett ; 367(5)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037451

RESUMO

Stable, long-term interactions between fungi and algae or cyanobacteria, collectively known as lichens, have repeatedly evolved complex architectures with little resemblance to their component parts. Lacking any central scaffold, the shapes they assume are casts of secreted polymers that cement cells into place, determine the angle of phototropic exposure and regulate water relations. A growing body of evidence suggests that many lichen extracellular polymer matrices harbor unicellular, non-photosynthesizing organisms (UNPOs) not traditionally recognized as lichen symbionts. Understanding organismal input and uptake in this layer is key to interpreting the role UNPOs play in lichen biology. Here, we review both polysaccharide composition determined from whole, pulverized lichens and UNPOs reported from lichens to date. Most reported polysaccharides are thought to be structural cell wall components. The composition of the extracellular matrix is not definitively known. Several lines of evidence suggest some acidic polysaccharides have evaded detection in routine analysis of neutral sugars and may be involved in the extracellular matrix. UNPOs reported from lichens include diverse bacteria and yeasts for which secreted polysaccharides play important biological roles. We conclude by proposing testable hypotheses on the role that symbiont give-and-take in this layer could play in determining or modifying lichen symbiotic outcomes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Líquens/fisiologia , Polissacarídeos/química , Simbiose , Cianobactérias/química , Cianobactérias/fisiologia , Fungos/química , Fungos/fisiologia , Filogenia , Ácidos Urônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...