Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 235(10): 7094-7106, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32020589

RESUMO

Polyunsaturated fatty acids (PUFAs) and their metabolites may influence cell fate regulation. Herein, we investigated the effects of linoleic acid (LA) as ω-6 PUFA, eicosapentaenoic acid (EPA) as ω-3 PUFA and palmitic acid (PA) on vasculogenesis of embryonic stem (ES) cells. LA and EPA increased vascular structure formation and protein expression of the endothelial-specific markers fetal liver kinase-1, CD31 as well as VE-cadherin, whereas PA was without effect. LA and EPA increased reactive oxygen species (ROS) and nitric oxide (NO), activated endothelial NO synthase (eNOS) and raised intracellular calcium. The calcium response was inhibited by the intracellular calcium chelator BAPTA, sulfo-N-succinimidyl oleate which is an antagonist of CD36, the scavenger receptor for fatty acid uptake as well as by a CD36 blocking antibody. Prevention of ROS generation by radical scavengers or the NADPH oxidase inhibitor VAS2870 and inhibition of eNOS by L-NAME blunted vasculogenesis. PUFAs stimulated AMP activated protein kinase-α (AMPK-α) as well as peroxisome proliferator-activated receptor-α (PPAR-α). AMPK activation was abolished by calcium chelation as well as inhibition of ROS and NO generation. Moreover, PUFA-induced vasculogenesis was blunted by the PPAR-α inhibitor GW6471. In conclusion, ω-3 and ω-6 PUFAs stimulate vascular differentiation of ES cells via mechanisms involving calcium, ROS and NO, which regulate function of the energy sensors AMPK and PPAR-α and determine the metabolic signature of vascular cell differentiation.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Quelantes de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , NADPH Oxidases/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , PPAR alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Stem Cells Int ; 2018: 9215792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30651739

RESUMO

The milk thistle (Silybum marianum (L.) Gaertn.) compound silibinin may be an inhibitor of the angiotensin II type 1 (AT1) receptor which is expressed in differentiating embryonic stem (ES) cells and is involved in the regulation of cardiomyogenesis. In the present study, it was demonstrated that silibinin treatment decreased the number of spontaneously contracting cardiac foci and cardiac cell areas differentiated from ES cells as well as contraction frequency and frequency of calcium (Ca2+) spiking. In contrast, angiotensin II (Ang II) treatment stimulated cardiomyogenesis as well as contraction and Ca2+ spiking frequency, which were abolished in the presence of silibinin. Intracellular Ca2+ transients elicited by Ang II in rat smooth muscle cells were not impaired upon silibinin treatment, excluding the possibility that the compound acted on the AT1 receptor. Ang II treatment activated extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways in embryoid bodies which were abolished upon silibinin pretreatment. In summary, our data suggest that silibinin inhibits cardiomyogenesis of ES cells by interfering with Ang II signaling downstream of the AT1 receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA