Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2391, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504837

RESUMO

Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diaminas/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Diaminas/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Miócitos Cardíacos/citologia , Consumo de Oxigênio/efeitos dos fármacos , Teratoma/tratamento farmacológico , Teratoma/etiologia , Teratoma/patologia
2.
Small ; 16(10): e1904619, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971659

RESUMO

Thanks to its photocatalytic property, graphitic carbon nitride (g-C3 N4 ) is a promising candidate in various applications including nanomedicine. However, studies focusing on the suitability of g-C3 N4 for cancer therapy are very limited and possible underlying molecular mechanisms are unknown. Here, it is demonstrated that photoexcitation of g-C3 N4 can be used effectively in photodynamic therapy, without using any other carrier or additional photosensitizer. Upon light exposure, g-C3 N4 treatment kills cancer cells, without the need of any other nanosystem or chemotherapeutic drug. The material is efficiently taken up by tumor cells in vitro. The transcriptome and proteome of g-C3 N4 and light treated cells show activation in pathways related to both oxidative stress, cell death, and apoptosis which strongly suggests that only when combined with light exposure, g-C3 N4 is able to kill cancer cells. Systemic administration of the mesoporous form results in elimination from urinary bladder without any systemic toxicity. Administration of the material significantly decreases tumor volume when combined with local light treatment. This study paves the way for the future use of not only g-C3 N4 but also other 2D nanomaterials in cancer therapy.


Assuntos
Grafite , Neoplasias , Compostos de Nitrogênio , Fotoquimioterapia , Células A549 , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Grafite/química , Grafite/farmacologia , Humanos , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Fotoquimioterapia/métodos
3.
Methods Mol Biol ; 1916: 249-261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30535702

RESUMO

The expression of Yamanaka factors (Oct3/4, Klf-4, Sox-2, c-Myc) can reprogram cancer cells to a pluripotent stage. This may cause the removal of their epigenetic memory and result in altered tumorigenicity. Various studies in the literature have shown that cancer cell reprogramming is a potential tool to study disease progression or discover novel therapeutic or diagnostic markers in cancer research. In this chapter, we aim to introduce the cancer cell reprogramming protocol in detail by using human melanocytes and melanoma cell lines, and Sendai viral vectors encoding Yamanaka factors have been used to reprogram cells. Representative results are discussed and important notes have been summarized in order to point out important steps during cancer cell reprogramming.


Assuntos
Carcinogênese/genética , Reprogramação Celular/genética , Melanoma/genética , Biologia Molecular/métodos , Diferenciação Celular/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Melanócitos/patologia , Melanoma/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/genética , Transfecção/métodos
4.
Adv Exp Med Biol ; 1107: 129-142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29882208

RESUMO

Due to its extraordinary features such as large surface area, high electrical conductivity, chemical stability and mechanical properties, graphene attracts great interest in various fields of biomedical sciences including biosensors, cancer therapy, diagnosis and regenerative medicine. The use of graphene-based materials has been of great interest for the design of scaffolds that can promote neural tissue regeneration. Recent studies published over the last few years clearly show that graphene and graphene based materials promote adhesion, proliferation and differentiation of various cells including embryonic stem cells (ESC), neural stem cells (NSC), mesenchymal stem cells (MSC) and induced pluripotent stem cells (iPSC). Therefore graphene based materials are one of the promising nanoplatforms in regenerative medicine for neural tissue injury. With its unique topographic and chemical properties, graphene is used as a scaffold that could provide a bridge between regenerating nerves. More importantly, as a conductive substrate, graphene allows the continuation of electrical conduction between damaged nerve ends. The integration of supportive cells such as glial, neural precursor or stem cells in such a scaffold shows higher regeneration when compared to currently used neural autografts and nerve conduits. This review discusses the details of such studies involving graphene based materials with a special interest on neural stem cells, mesenchymal stem cells or pluripotent stem cells.


Assuntos
Grafite , Regeneração Nervosa , Células-Tronco Neurais/citologia , Medicina Regenerativa/tendências , Diferenciação Celular , Humanos , Alicerces Teciduais
5.
Cancer Lett ; 369(1): 1-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26276716

RESUMO

Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming.


Assuntos
Reprogramação Celular , Neoplasias/terapia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/fisiologia , Fatores de Transcrição/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...