Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105136, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723554

RESUMO

BACKGROUND: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5+-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus. METHODS: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5+-DM outbreak. FINDINGS: Sixty new anti-MDA5+, but not other MSAs surged between 2020 and 2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. INTERPRETATION: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms. FUNDING: This work was supported in part by the National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), and in part by the National Institutes of Health (NIH) grant R01-AI155696 and pilot awards from the UC Office of the President (UCOP)-RGPO (R00RG2628, R00RG2642 and R01RG3780) to P.G. S.S was supported in part by R01-AI141630 (to P.G) and in part through funds from the American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists.

2.
bioRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745574

RESUMO

BACKGROUND: Although differentiation therapy can cure some hematologic malignancies, its curative potential remains unrealized in solid tumors. This is because conventional computational approaches succumb to the thunderous noise of inter-/intratumoral heterogeneity. Using colorectal cancers (CRCs) as an example, here we outline a machine learning(ML)-based approach to track, differentiate, and selectively target cancer stem cells (CSCs). METHODS: A transcriptomic network was built and validated using healthy colon and CRC tissues in diverse gene expression datasets (~5,000 human and >300 mouse samples). Therapeutic targets and perturbation strategies were prioritized using ML, with the goal of reinstating the expression of a transcriptional identifier of the differentiated colonocyte, CDX2, whose loss in poorly differentiated (CSC-enriched) CRCs doubles the risk of relapse/death. The top candidate target was then engaged with a clinical-grade drug and tested on 3 models: CRC lines in vitro, xenografts in mice, and in a prospective cohort of healthy (n = 3) and CRC (n = 23) patient-derived organoids (PDOs). RESULTS: The drug shifts the network predictably, induces CDX2 and crypt differentiation, and shows cytotoxicity in all 3 models, with a high degree of selectivity towards all CDX2-negative cell lines, xenotransplants, and PDOs. The potential for effective pairing of therapeutic efficacy (IC50) and biomarker (CDX2-low state) is confirmed in PDOs using multivariate analyses. A 50-gene signature of therapeutic response is derived and tested on 9 independent cohorts (~1700 CRCs), revealing the impact of CDX2-reinstatement therapy could translate into a ~50% reduction in the risk of mortality/recurrence. CONCLUSIONS: Findings not only validate the precision of the ML approach in targeting CSCs, and objectively assess its impact on clinical outcome, but also exemplify the use of ML in yielding clinical directive information for enhancing personalized medicine.

3.
medRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961408

RESUMO

Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5 + -DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 senses single-stranded RNA and is a key pattern recognition receptor for the SARS-CoV-2 virus. Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018-December 2022 in Yorkshire, UK. MDA5-positivity was correlated with clinical features and outcome, and regional SARS-CoV-2 positivity and vaccination rates. Gene expression patterns in COVID-19 were compared with autoimmune lung disease and idiopathic pulmonary fibrosis (IPF) to gain clues into the genesis of the observed MDA5 + -DM outbreak. Results: Sixty new anti-MDA5+, but not other MSAs surged between 2020-2022, increasing from 0.4% in 2019 to 2.1% (2020), 4.8% (2021) and 1.7% (2022). Few (8/60) had a prior history of confirmed COVID-19, peak rates overlapped with regional SARS-COV-2 community positivity rates in 2021, and 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. Few (8/60) had a prior history of COVID-19, whereas 58% (35/60) had received anti-SARS-CoV-2 RNA vaccines. 25/60 cases developed ILD which rapidly progression with death in 8 cases. Among the 35/60 non-ILD cases, 14 had myositis, 17 Raynaud phenomena and 10 had dermatomyositis spectrum rashes. Transcriptomic studies showed strong IFIH1 (gene encoding for MDA5) induction in COVID-19 and autoimmune-ILD, but not IPF, and IFIH1 strongly correlated with an IL-15-centric type-1 interferon response and an activated CD8+ T cell signature that is an immunologic hallmark of progressive ILD in the setting of systemic autoimmune rheumatic diseases. The IFIH1 rs1990760TT variant blunted such response. Conclusions: A distinct pattern of MDA5-autoimmunity cases surged contemporaneously with circulation of the SARS-COV-2 virus during COVID-19. Bioinformatic insights suggest a shared immunopathology with known autoimmune lung disease mechanisms.

4.
Sci Rep ; 13(1): 17566, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845255

RESUMO

Carbon materials play important roles as catalysts or catalyst supports for reduction reactions owing to their high porosity, large specific surface area, great electron conductivity, and excellent chemical stability. In this paper, a mesoporous N-doped carbon substrate (exhibited as N-C) has been synthesized by ionothermal carbonization of glucose in the presence of histidine. The N-C substrate was modified by Fe3O4 nanoparticles (N-C/Fe3O4), and then Pd nanoparticles were stabilized on the magnetic substrate to synthesize an eco-friendly Pd catalyst with high efficiency, magnetic, reusability, recoverability, and great stability. To characterize the Pd/Fe3O4-N-C nanocatalyst, different microscopic and spectroscopic methods such as FT-IR, XRD, SEM/EDX, and TEM were applied. Moreover, Pd/Fe3O4-N-C showed high catalytic activity in reducing nitroaromatic compounds in water at ambient temperatures when NaBH4 was used as a reducing agent. The provided nanocatalyst's great catalytic durability and power can be attributed to the synergetic interaction among well-dispersed Pd nanoparticles and N-doped carbonaceous support.

5.
EBioMedicine ; 94: 104719, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37516087

RESUMO

BACKGROUND: Single-cell transcriptomic studies have greatly improved organ-specific insights into macrophage polarization states are essential for the initiation and resolution of inflammation in all tissues; however, such insights are yet to translate into therapies that can predictably alter macrophage fate. METHOD: Using machine learning algorithms on human macrophages, here we reveal the continuum of polarization states that is shared across diverse contexts. A path, comprised of 338 genes accurately identified both physiologic and pathologic spectra of "reactivity" and "tolerance", and remained relevant across tissues, organs, species, and immune cells (>12,500 diverse datasets). FINDINGS: This 338-gene signature identified macrophage polarization states at single-cell resolution, in physiology and across diverse human diseases, and in murine pre-clinical disease models. The signature consistently outperformed conventional signatures in the degree of transcriptome-proteome overlap, and in detecting disease states; it also prognosticated outcomes across diverse acute and chronic diseases, e.g., sepsis, liver fibrosis, aging, and cancers. Crowd-sourced genetic and pharmacologic studies confirmed that model-rationalized interventions trigger predictable macrophage fates. INTERPRETATION: These findings provide a formal and universally relevant definition of macrophage states and a predictive framework (http://hegemon.ucsd.edu/SMaRT) for the scientific community to develop macrophage-targeted precision diagnostics and therapeutics. FUNDING: This work was supported by the National Institutes for Health (NIH) grant R01-AI155696 (to P.G, D.S and S.D). Other sources of support include: R01-GM138385 (to D.S), R01-AI141630 (to P.G), R01-DK107585 (to S.D), and UG3TR003355 (to D.S, S.D, and P.G). D.S was also supported by two Padres Pedal the Cause awards (Padres Pedal the Cause/RADY #PTC2017 and San Diego NCI Cancer Centers Council (C3) #PTC2017). S.S, G.D.K, and D.D were supported through The American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists. We also acknowledge support from the Padres Pedal the Cause #PTC2021 and the Torey Coast Foundation, La Jolla (P.G and D.S). D.S, P.G, and S.D were also supported by the Leona M. and Harry B. Helmsley Charitable Trust.


Assuntos
Macrófagos , Médicos , Humanos , Estados Unidos , Animais , Camundongos , Inflamação
6.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993763

RESUMO

Crohn's disease (CD) is a complex, clinically heterogeneous disease of multifactorial origin; there is no perfect pre-clinical model, little insight into the basis for such heterogeneity, and still no cure. To address these unmet needs, we sought to explore the translational potential of adult stem cell-derived organoids that not only retain their tissue identity, but also their genetic and epigenetic disease-driving traits. We prospectively created a biobank of CD patient-derived organoid cultures (PDOs) using biopsied tissues from colons of 34 consecutive subjects representing all clinical subtypes (Montreal Classification B1-B3 and perianal disease). PDOs were generated also from healthy subjects. Comparative gene expression analyses enabled benchmarking of PDOs as tools for modeling the colonic epithelium in active disease and revealed that despite the clinical heterogeneity there are two major molecular subtypes: immune-deficient infectious-CD [IDICD] and stress and senescence-induced fibrostenotic-CD [S2FCD]. The transcriptome, genome and phenome show a surprising degree of internal consistency within each molecular subtype. The spectrum of morphometric, phenotypic, and functional changes within the "living biobank" reveals distinct differences between the molecular subtypes. These insights enabled drug screens that reversed subtype-specific phenotypes, e.g., impaired microbial clearance in IDICD was reversed using agonists for nuclear receptors, and senescence in S2FCD was rectified using senotherapeutics, but not vice versa . Phenotyped-genotyped CD-PDOs may fill the gap between basic biology and patient trials by enabling pre-clinical Phase '0' human trials for personalized therapeutics. In Brief: This work creates a prospectively biobanked phenotyped-genotyped Crohn's disease patient-derived organoids (CD-PDOs) as platforms for molecular subtyping of disease and for ushering personalized therapeutics. HIGHLIGHTS: Prospectively biobanked CD-organoids recapitulate the disease epithelium in patientsThe phenome-transcriptome-genome of CD-organoids converge on two molecular subtypesOne subtype shows impaired microbial clearance, another increased cellular senescencePhenotyped-genotyped PDOs are then used for integrative and personalized therapeutics.

7.
J Environ Manage ; 329: 117009, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535146

RESUMO

In this work, the magnetic layered double hydroxide composite as a new adsorbent was synthesized and applied for efficient copper (II) and nickel (II) ions removal from aqueous samples. After fabrication, the adsorbent was identified and characterized via Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy and vibrating sample magnetometer (VSM), while FE-SEM reveals and denote layered structure of present adsorbent. The magnetic strength of 20.34 emu g-1 supplies sufficient magnetic property which leads to a solution fast separation of the adsorbent from the sample solution by an external magnet. Then, central composite design (CCD) based on response surface methodology (RSM) was used to optimize the effects of various parameters on the removal process and accordingly best operational conditions was fixed at: 0.039 g of adsorbent, 6.31 min sonication, pH (8) and 17 mgl-1 of both copper (II) and nickel (II) ions concentrations, respectively. Moreover, the "Lack of Fit p-values" of analysis of variance were obtained to be 0.3758 and 0.8750 for nickel (II) and copper (II) ions, respectively which is not significant value denoting suitability of the current model. Amongst different isotherm and kinetic models, the current adsorption process followed the Freundlich and pseudo-second-order models, while the criterion for judgment is based on their higher correlation coefficients (more than 0.9) compared to other models. Kinetic judgment is based on the closeness of experimental and theoretical adsorption capacity and higher R2 values. The Freundlich model based on the multilayer process occurs owing to the adsorption of ions onto the heterogeneous surface of the adsorbent. The adsorbent showed the maximum adsorption capacities of 200.00 mg g-1 and 109.92 mg g-1 for Cu2+ and Ni2+ ions, respectively. Experimental results explore that the chemical and electrostatic interactions were responsible for the under-study model ions. The relative standard deviations assign to both metal ions adsorption was 1.63-3.78% representing the applicability of the composite for practical purposes.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/análise , Adsorção , Níquel/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Hidróxidos/química , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio , Íons
8.
Sci Rep ; 12(1): 13678, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953703

RESUMO

Green synthesis of a noble metal such as Ag nanoparticles is an enormously developed research area. In this study, a biochar/Fe3O4-Ag magnetic nanocatalyst was produced via a green path by using Celery stalk as a carbon-based substrate and Celery leaf extract as reducing and stabilizing agents to construct Ag nanoparticles. The synthesized nanocatalyst was determined using various techniques, such as UV-Vis spectroscopy, FT-IR spectroscopy, XRD (X-ray diffraction), SEM/EDX spectroscopy (scanning electron microscopy/energy-dispersive X-ray), TEM (transmission electron microscopy), and VSM (vibrating sample magnetometer). To survey the catalytic action of the biochar/Fe3O4-Ag nanocatalyst, it was used in the reduction reaction of disparate nitroaromatics, aldehydes, and ketones. This catalyst has demonstrated good characteristics in terms of the amount, reusability, recoverability, activity, and structural integrity of the catalyst during the reaction. In addition, biochar/Fe3O4-Ag could be detached magnetically and recycled multiple times without significantly reducing its catalytic performance.


Assuntos
Apium , Nanopartículas Metálicas , Carvão Vegetal , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Endod ; 48(6): 699-706, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35307515

RESUMO

INTRODUCTION: The aims of this observational study were to determine if endodontists' practices in early 2021 experienced changes in patient characteristics compared with a comparable prepandemic period and to determine whether the changes reported during the initial outbreak of coronavirus disease 2019 (COVID-19) in 2020 were reversed 1 year later. METHODS: Demographic, diagnostic, and procedural data of 2657 patient visits from 2 endodontist private offices from March 16 to May 31 in 2019, 2020, and 2021 were included. Bivariate analyses and multiple logistic regression models were used to examine the impact of ongoing COVID-19 pandemic on patient data. RESULTS: Bivariate analyses showed that patients' self-reported pain levels and the number of visits with irreversible pulpitis in 2021 were higher than 2019 (P < .05). Patients' self-reported pain, percussion pain, and palpation pain levels in 2021 were less than 2020 (P < .05). Multiple logistic regression analyses showed that endodontists' practices in 2021 had an increase in the number of nonsurgical root canal treatments (odds ratio [OR] = 1.482; 95% confidence interval [CI], 1.102-1.992), and apicoectomies (OR = 2.662; 95% CI, 1.416-5.004) compared with 2019. Compared with the initial outbreak in 2020, endodontists' practices in 2021 had visits with older patients (OR = 1.288; 95% CI, 1.045-1.588), less females (OR = 0.781; 95% CI, 0.635-.960), more molars (OR = 1.389; 95% CI, 1.065-1.811), and less pain on percussion (OR = 0.438; 95% CI, 0.339-0.566). CONCLUSIONS: The ongoing COVID-19 pandemic was associated with an increase in the number of nonsurgical root canal treatments. Some of the changes observed during the initial outbreak in 2020, including objective pain parameters, returned to normal levels 1 year later.


Assuntos
COVID-19 , Endodontia , COVID-19/epidemiologia , Surtos de Doenças , Feminino , Humanos , Dor , Pandemias
10.
Elife ; 102021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34409938

RESUMO

For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.


Assuntos
Fertilidade , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Transdução de Sinais/genética , Capacitação Espermática/genética , Proteínas de Transporte Vesicular/genética , Animais , Regulação para Baixo , Feminino , Fertilidade/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Espermatócitos/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Testículo/patologia
11.
Elife ; 102021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34463615

RESUMO

Background: SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods: We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results: Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions: Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding: This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).


Assuntos
Células-Tronco Adultas , COVID-19 , Pulmão/patologia , Modelos Biológicos , Organoides , Células-Tronco Adultas/virologia , COVID-19/patologia , COVID-19/virologia , Feminino , Humanos , Pulmão/citologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Organoides/virologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/virologia , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia
12.
EBioMedicine ; 68: 103390, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34127431

RESUMO

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Antivirais/administração & dosagem , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Interleucina-15/genética , Receptores de Interleucina-15/genética , Viroses/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/farmacologia , Antivirais/farmacologia , Inteligência Artificial , Autopsia , COVID-19/imunologia , Cricetinae , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Redes Reguladoras de Genes/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Interleucina-15/sangue , Pulmão/imunologia , Mesocricetus , Pandemias , Receptores de Interleucina-15/sangue , Viroses/imunologia , Tratamento Farmacológico da COVID-19
13.
bioRxiv ; 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32995790

RESUMO

We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all vi ral p andemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. ONE SENTENCE SUMMARY: The host immune response in COVID-19. PANEL RESEARCH IN CONTEXT: Evidence before this study: The SARS-CoV-2 pandemic has inspired many groups to find innovative methodologies that can help us understand the host immune response to the virus; unchecked proportions of such immune response have been implicated in fatality. We searched GEO and ArrayExpress that provided many publicly available gene expression data that objectively measure the host immune response in diverse conditions. However, challenges remain in identifying a set of host response events that are common to every condition. There are no studies that provide a reproducible assessment of prognosticators of disease severity, the host response, and therapeutic goals. Consequently, therapeutic trials for COVID-19 have seen many more 'misses' than 'hits'. This work used multiple (> 45,000) gene expression datasets from GEO and ArrayExpress and analyzed them using an unbiased computational approach that relies upon fundamentals of gene expression patterns and mathematical precision when assessing them.Added value of this study: This work identifies a signature that is surprisingly conserved in all viral pandemics, including Covid-19, inspiring the nomenclature ViP-signature. A subset of 20-genes classified disease severity in respiratory pandemics. The ViP signatures pinpointed the nature and source of the 'cytokine storm' mounted by the host. They also helped formulate precise therapeutic goals and rationalized the repurposing of FDA-approved drugs.Implications of all the available evidence: The ViP signatures provide a quantitative and qualitative framework for assessing the immune response in viral pandemics when creating pre-clinical models; they serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.

14.
bioRxiv ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33106807

RESUMO

SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type-II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Infected ALO-monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Findings validate a human lung model of COVID-19 which can be immediately utilized to investigate COVID-19 pathogenesis, and vet new therapies and vaccines.

15.
Commun Biol ; 3(1): 259, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444859

RESUMO

Lung macrophages mature after birth, placing newborn infants, particularly those born preterm, within a unique window of susceptibility to disease. We hypothesized that in preterm infants, lung macrophage immaturity contributes to the development of bronchopulmonary dysplasia (BPD), the most common serious complication of prematurity. By measuring changes in lung macrophage gene expression in preterm patients at risk of BPD, we show here that patients eventually developing BPD had higher inflammatory mediator expression even on the first day of life. Surprisingly, the ex vivo response to LPS was similar across all samples. Our analysis did however uncover macrophage signature genes whose expression increased in the first week of life specifically in patients resilient to disease. We propose that these changes describe the dynamics of human lung macrophage differentiation. Our study therefore provides new mechanistic insight into both neonatal lung disease and human developmental immunology.


Assuntos
Biomarcadores/análise , Displasia Broncopulmonar/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Macrófagos/imunologia , Pneumonia/patologia , Transcriptoma , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/imunologia , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Macrófagos/metabolismo , Macrófagos/patologia , Pneumonia/genética , Pneumonia/imunologia
16.
Front Physiol ; 11: 275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322218

RESUMO

Macrophages engulf and digest microbes, cellular debris, and various disease-associated cells throughout the body. Understanding the dynamics of macrophage gene expression is crucial for studying human diseases. As both bulk RNAseq and single cell RNAseq datasets become more numerous and complex, identifying a universal and reliable marker of macrophage cell becomes paramount. Traditional approaches have relied upon tissue specific expression patterns. To identify universal biomarkers of macrophage, we used a previously published computational approach called BECC (Boolean Equivalent Correlated Clusters) that was originally used to identify conserved cell cycle genes. We performed BECC analysis using the known macrophage marker CD14 as a seed gene. The main idea behind BECC is that it uses massive database of public gene expression dataset to establish robust co-expression patterns identified using a combination of correlation, linear regression and Boolean equivalences. Our analysis identified and validated FCER1G and TYROBP as novel universal biomarkers for macrophages in human and mouse tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...