Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 113(8): 1515-1524, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36935379

RESUMO

Ascochyta lentis, the causal organism of Ascochyta blight (AB) of lentil (Lens culinaris), has been shown to produce an avirulence effector protein that mediates AB resistance in certain lentil cultivars. The two known forms of the effector protein were identified from a biparental mapping population between isolates that have reciprocal virulence on 'PBA Hurricane XT' and 'Nipper'. The effector AlAvr1-1 was described for the PBA Hurricane XT-avirulent isolate P94-24 and AlAvr1-2 characterized in the PBA Hurricane XT-virulent isolate AlKewell. Here, we performed a genome-wide association study to identify other loci associated with AB for a differential set of lentil cultivars from a diverse panel of isolates collected in the Australian lentil-growing regions from 2013 to 2020. The chromosome 3 AlAvr1 locus was strongly associated with the PBA Hurricane XT, 'Indianhead', and Nipper disease responses, but one other genomic region on chromosome 11 was also associated with the Nipper disease trait. Our results corroborate earlier work that identified the AlAvr1 locus for field-collected isolates that span the period before release and after widespread adoption of PBA Hurricane XT. A multiplex PCR assay was developed to differentiate the genes AlAvr1-1 and AlAvr1-2 to predict PBA Hurricane XT avirulence and pathotype designation in the diversity panel. Increasing numbers of the PBA Hurricane XT-virulent pathotype 2 isolates across that time indicate strong selection for isolates with the AlAvr1-2 allele. Furthermore, one other region of the A. lentis genome may contribute to the pathogen-host interaction for lentil AB.

2.
Phytopathology ; 113(2): 265-276, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35984372

RESUMO

Ascochyta blight is a damaging disease that affects the stems, leaves, and pods of field pea (Pisum sativum) and impacts yield and grain quality. In Australia, field pea Ascochyta blight is primarily caused by the necrotrophic fungal species Peyronellaea pinodes and Ascochyta koolunga. In this study, we screened 1,276 Pisum spp. germplasm accessions in seedling disease assays with a mix of three isolates of P. pinodes and 641 accessions with three mixed isolates of A. koolunga (513 accessions were screened with both species). A selection of three P. sativum accessions with low disease scores for either pathogen, or in some cases both, were crossed with Australian field pea varieties PBA Gunyah and PBA Oura, and recombinant inbred line populations were made. Populations at the F3:4 and F4:5 generation were phenotyped for their disease response to P. pinodes and A. koolunga, and genotypes were determined using the diversity arrays technology genotyping method. Marker-trait associations were identified using a genome-wide association study approach. Trait-associated loci were mapped to the published P. sativum genome assembly, and candidate resistance gene analogues were identified in the corresponding genomic regions. One locus on chromosome 2 (LG1) was associated with resistance to P. pinodes, and the 8 Mb genomic region contains 156 genes, two of which are serine/threonine protein kinases, putatively contributing to the resistance trait. A second locus on chromosome 5 (LG3) was associated with resistance to A. koolunga, and the 35 Mb region contains 488 genes, of which five are potential candidate resistance genes, including protein kinases, a mitogen-activated protein kinase, and an ethylene-responsive protein kinase homolog.


Assuntos
Estudo de Associação Genômica Ampla , Pisum sativum , Pisum sativum/genética , Pisum sativum/microbiologia , Plântula/genética , Austrália , Doenças das Plantas/microbiologia
3.
Front Plant Sci ; 10: 1043, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543883

RESUMO

In alkaline soils in arid and semi-arid areas toxic concentrations of the micronutrient boron (B) are problematic for many cereal and legume crops. Molecular markers have been developed for B toxicity in cereals and Medicago. There is a need for such tools in clovers-Trifolium. To this end, we undertook a genome-wide association study (GWAS) with a diversity panel of subterranean clover (Trifolium subterraneum L.), an established model pasture legume for genetic and genomic analyses for the genus. The panel comprised 124 T. subterraneum genotypes (97 core collection accessions and 27 Australian cultivars). Substantial and useful diversity in B toxicity tolerance was found in T. subterraneum. Such variation was continuously distributed and exhibited a high broad sense heritability H 2 = 0.92. Among the subspecies of T. subterraneum, ssp. brachycalycinum was most susceptible to B toxicity (P < 0.05). From the GWAS, the most important discoveries were single-nucleotide polymorphisms (SNPs) located on Chr 1, 2, and 3, which mapped to haplotype blocks providing potential genes for a B toxicity tolerance assay and meriting further investigation. A SNP identified on Chr 1 aligned with Medicago truncatula respiratory burst oxidase-like protein (TSub_ g2235). This protein is known to respond to abiotic and biotic stimuli. The identification of these novel potential genes and their use to design markers for marker-assisted selection offer a pathway in pasture legumes to manage B toxicity by exploiting B tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...