Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(6): 1590-1595, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306160

RESUMO

The Bi2O2Se surfaces are well-known to possess 50% Se vacancies, yet they have shown no in-gap states within the indirect bandgap (∼0.8 eV). We have found that the hidden in-gap states arising from the Se vacancies in a 2 × 1 pattern induce a reduced direct bandgap (∼0.5 eV). Such a reduced direct bandgap is responsible for the high electron mobility of Bi2O2Se. Moreover, the Bi oxide overlayers of the Bi thin films, formed through air exposure and annealing, unexpectedly exhibit a large direct bandgap (∼2.1 eV). The simplified fabrication of Bi oxide overlayers provides promise for improving Bi2O2Se electronic devices and enhancing photocatalytic activity.

2.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366002

RESUMO

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Nitrogênio/química , Sulfatos , Pontos Quânticos/química , Enxofre/química
3.
Nano Lett ; 22(12): 4677-4685, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674452

RESUMO

Scanning transmission electron microscopy (STEM) is an indispensable tool for atomic-resolution structural analysis for a wide range of materials. The conventional analysis of STEM images is an extensive hands-on process, which limits efficient handling of high-throughput data. Here, we apply a fully convolutional network (FCN) for identification of important structural features of two-dimensional crystals. ResUNet, a type of FCN, is utilized in identifying sulfur vacancies and polymorph types of MoS2 from atomic resolution STEM images. Efficient models are achieved based on training with simulated images in the presence of different levels of noise, aberrations, and carbon contamination. The accuracy of the FCN models toward extensive experimental STEM images is comparable to that of careful hands-on analysis. Our work provides a guideline on best practices to train a deep learning model for STEM image analysis and demonstrates FCN's application for efficient processing of a large volume of STEM data.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Transmissão e Varredura , Molibdênio/química
4.
ACS Appl Mater Interfaces ; 13(48): 57588-57596, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797625

RESUMO

Noncentrosymmetric transition-metal dichalcogenides, particularly their 3R polymorphs, provide a robust setting for valleytronics. Here, we report on the selective growth of monolayers and bilayers of MoS2, which were acquired from two closely but differently oriented substrates in a chemical vapor deposition reactor. It turns out that as-grown bilayers are predominantly 3R-type, not more common 2H-type, as verified by microscopic and spectroscopic characterization. As expected, the 3R bilayer showed a significantly higher valley polarization compared with the centrosymmetric 2H bilayer, which undergoes efficient interlayer scattering across contrasting valleys because of their vertical alignment of the K and K' points in momentum space. Interestingly, the 3R bilayer showed even higher valley polarization compared with the monolayer counterpart. Moreover, the 3R bilayer reasonably maintained its valley efficiency over a very wide range of excitation power density from ∼0.16 kW/cm2 to ∼0.16 MW/cm2 at both low and room temperatures. These observations are rather surprising because valley dephasing could be more efficient in the bilayer via both interlayer and intralayer scatterings, whereas only intralayer scattering is allowed in the monolayer. The improved valley polarization of the 3R bilayer can be attributed to its indirect-gap nature, where valley-polarized excitons can relax into the valley-insensitive band edge, which otherwise scatter into the contrasting valley to effectively cancel out the initial valley polarization. Our results provide a facile route for the growth of 3R-MoS2 bilayers that could be utilized as a platform for advancing valleytronics.

5.
ACS Omega ; 6(46): 31366-31374, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841180

RESUMO

Owing to their natural abundance, seawater together with sunlight has a potential to meet the global challenges in terms of water scarcity and energy crisis. Herein, we demonstrate a solar vapor generator composed of an inner flame candle soot (IFCS) deposited on a cellulose filter paper (FP) prepared by a simple two-step process. The resultant IFCS/FP device exhibits a high photothermal conversion ability owing to the broadband solar absorption of the IFCS layer along with the multiple scattering of the incoming sunlight in the porous microstructure of the cellulose FP. Additionally, the low thermal conductivity of the IFCS effectively localizes the photothermally generated heat at the IFCS/FP surface, thereby significantly suppressing the conduction heat losses to the underlying bulk water. Meanwhile, the capillary action of the FP supplies an adequate amount of water to the heated surface for accelerating the evaporation process. Benefitting from the synergistic effect of these characteristics, the IFCS/FP achieves high evaporation rates of ∼1.16 and ∼4.09 kg m-2 h-1 and their corresponding efficiencies of ∼75.1 and 90.9% under one and three sun illumination, respectively. Moreover, the IFCS/FP device presents an excellent longevity owing to the persistent performance over 15 repeated cycles under one and three sun illumination. Hence, the facile fabrication, fine mechanical strength, desalination, and the salt-resistance ability of our IFCS/FP make it a suitable candidate for practical applications.

6.
ACS Appl Mater Interfaces ; 13(43): 50911-50919, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34551516

RESUMO

Effectively utilizing eco-friendly solar energy for desalination and wastewater purification has immense potential to overcome the global water crisis. Herein, we demonstrate a highly efficient solar vapor generator (SVG) developed via a simple morphological alteration, from a two-dimensional (2D) TiO2 film (TF) to one-dimensional (1D) TiO2 nanorods (TNRs) grown on a glassy carbon foam (CF). Given that evaporation is primarily a surface physical phenomenon, the 1D morphology of TNRs provides a higher evaporation surface area compared to their 2D counterpart. Additionally, the superhydrophilic nature of TNRs ensures an adequate supply of water to the evaporation surface via effective capillary action. Consequently, the 1D TNRs properly utilize photothermal heat, which results in a significant reduction in the convection heat loss. Owing to the synergistic effect of these characteristics, TNRs/CF acquires a high evaporation rate of ∼2.23 kg m-2 h-1 and an energy utilization efficiency of ∼67.1% under one sun irradiation. Moreover, the excellent stability, desalination, self-cleaning capabilities, and the facile fabrication method make TNRs/CF suitable for cost-effective, large-scale device application.

7.
ACS Appl Mater Interfaces ; 12(2): 2490-2496, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840505

RESUMO

Steam generation by eco-friendly solar energy has immense potential in terms of low-cost power generation, desalination, sanitization, and wastewater treatment. Herein, highly efficient steam generation in a bilayer solar steam generator (BSSG) is demonstrated, which is comprised of a large-area SnSe-SnSe2 layer deposited on a glassy carbon foam (CF). Both CF and SnSe-SnSe2 possess high photothermal conversion capabilities and low thermal conductivities. The combined bilayer system cumulatively converts input solar light into heat through phonon-assisted transitions in the indirect band gap SnSe-SnSe2 layer, together with trapping of sunlight via multiple scattering due to the porous morphology of the CF. This synergistic effect leads to efficient broadband solar absorption. Moreover, the low out-of-plane thermal conductivities of SnSe-SnSe2 and CF confine the generated heat at the evaporation surface, resulting in a significant reduction of heat losses. Additionally, the hydrophilic nature of the acid-treated CF offers effective water transport via capillary action, required for efficient solar steam generation in a floating form. A high evaporation rate (1.28 kg m-2 h-1) and efficiency (84.1%) are acquired under 1 sun irradiation. The BSSG system shows high recyclability, stability, and durability under repeated steam-generation cycles, which renders its practical device applications possible.

8.
Cureus ; 11(7): e5178, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31565588

RESUMO

Background End-stage renal disease (ESRD) is a major public health problem with many associated symptoms. Uremic pruritus (UP) develops in 40% of patients on hemodialysis and has major effects on the patient's life. It is also an independent risk factor for increased mortality, and its psychiatric implications remain poorly characterized in our local setup, where it tends to be underdiagnosed and undertreated. Objectives and rationale The study aims to report the prevalence of uremic pruritus in our study population and associate it with various patient parameters, which may define a subset of patients at high risk for this pruritus. We also assess the effects of uremic pruritus on the patient's quality of life (by using the Dermatology Life Quality Index; DLQI) and depressive symptoms (by using the Public Health Questionnaire; PHQ-9). Materials and methods It was a descriptive, cross-sectional study conducted in the nephrology unit of the multi-organ failure (MOF) center of the Holy Family Hospital (HFH), Rawalpindi, Pakistan, from February 2019 to June 2019, during which 173 male patients on hemodialysis were selected. Informed consent was taken from patients and other skin-related causes of pruritis were excluded. Uremic pruritus was defined as pruritis lasting for at least three months after the onset of ESRD. The 5-D, PHQ-9, and DLQI questionnaires were used to assess pruritis, depressive symptoms, and quality of life, respectively. Their Cronbach's Alpha values for 73 responses were 0.83, 0.81, and 0.71, respectively. The descriptive analysis was performed using SPSS v23.0 (IBM Corp, Armonk, NY, US). Spearman's rank-order correlation, independent samples t-test, and one-way analysis of variance (ANOVA) were used to analyze study variables. Results The prevalence of uremic pruritus was 49.1%, with many patients having generalized itching. Unemployment and longer disease duration predisposed the patients towards uremic pruritus, as the mean 5-D score in this subset were greater (p<0.05 in the independent samples t-test). The results of one-way ANOVA were significant (p<0.05), indicating higher 5-D scores in worsening categories of depressive symptoms and quality of life. Spearman's correlation matrix showed that 5-D, PHQ-9, and DLQI scores were strongly correlated with each other. Conclusions The prevalence of uremic pruritus among male hemodialysis patients is high, at 49.1%. It significantly contributes to depressive symptoms and a lower quality of life, which are associated with worse prognosis in hemodialysis patients. Thus, a clinician must keep in mind the psychiatric implications of uremic pruritus and treat it effectively to optimize the patient's medical care.

9.
ACS Appl Mater Interfaces ; 10(47): 40824-40830, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30387344

RESUMO

Conformal growth of atomic-thick semiconductor layers on patterned substrates can boost up the performance of electronic and optoelectronic devices remarkably. However, conformal growth is a very challenging technological task, since the control of the growth processes requires utmost precision. Herein, we report on conformal growth and characterization of monolayer MoS2 on planar, microrugged, and nanorugged SiO2/Si substrates via metal-organic chemical vapor deposition. The continuous and conformal nature of monolayer MoS2 on the rugged surface was verified by high-resolution transmission electron microscopy. Strain effects were examined by photoluminescence (PL) and Raman spectroscopy. Interestingly, the photoresponsivity (∼254.5 mA/W) of as-grown MoS2 on the nanorugged substrate was 59 times larger than that of the planar sample (4.3 mA/W) under a small applied bias of 0.1 V. This value is record high when compared with all previous MoS2-based photocurrent generation under low or zero bias. Such enhancement in the photoresponsivity arises from a large active area for light-matter interaction and local strain for PL quenching, wherein the latter effect is the key factor and unique in the conformally grown monolayer on the nanorugged surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...