Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(37)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861940

RESUMO

The dewetting of thin Pt films on different surfaces is investigated as a means to provide the patterning for the top-down fabrication of GaN nanowire ensembles. The transformation from a thin film to an ensemble of nanoislands upon annealing proceeds in good agreement with the void growth model. With increasing annealing duration, the size and shape uniformity of the nanoislands improves. This improvement speeds up for higher annealing temperature. After an optimum annealing duration, the size uniformity deteriorates due to the coalescence of neighboring islands. By changing the Pt film thickness, the nanoisland diameter and density can be quantitatively controlled in a way predicted by a simple thermodynamic model. We demonstrate the uniformity of the nanoisland ensembles for an area larger than 1 cm2. GaN nanowires are fabricated by a sequence of dry and wet etching steps, and these nanowires inherit the diameters and density of the Pt nanoisland ensemble used as a mask. Our study achieves advancements in size uniformity and range of obtainable diameters compared to previous works. This simple, economical, and scalable approach to the top-down fabrication of nanowires is useful for applications requiring large and uniform nanowire ensembles with controllable dimensions.

2.
Beilstein J Nanotechnol ; 10: 1177-1187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293855

RESUMO

We present the combined analysis of electroluminescence (EL) and current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecular beam epitaxy. The data were acquired in a scanning electron microscope equipped with a micromanipulator and a luminescence detection system. Single NW spectra consist of emission lines originating from different quantum wells, and the width of the spectra increases with decreasing peak emission energy. The corresponding I-V characteristics are described well by a modified Shockley equation. The key advantage of this measurement approach is the possibility to correlate the EL intensity of a single-NW LED with the actual current density in this NW. This way, the external quantum efficiency (EQE) can be investigated as a function of the current in a single-NW LED. The comparison of the EQE characteristic of single NWs and the ensemble device allows for a quite accurate determination of the actual number of emitting NWs in the working ensemble LED and the respective current densities in its individual NWs. This information is decisive for a meaningful and comprehensive characterization of a NW ensemble device, rendering the measurement approach employed here a very powerful analysis tool.

3.
Nano Lett ; 19(7): 4263-4271, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150261

RESUMO

The growth of regular arrays of uniform III-V semiconductor nanowires is a crucial step on the route toward their application-relevant large-scale integration onto the Si platform. To this end, not only does optimal vertical yield, length, and diameter uniformity have to be engineered, but also, control over the nanowire crystal structure has to be achieved. Depending on the particular application, nanowire arrays with varying area density are required for optimal device efficiency. However, the nanowire area density substantially influences the nanowire growth and presents an additional challenge for nanowire device engineering. We report on the simultaneous in situ X-ray investigation of regular GaAs nanowire arrays with different area density during self-catalyzed vapor-liquid-solid growth on Si by molecular-beam epitaxy. Our results give novel insight into selective-area growth and demonstrate that shadowing of the Ga flux, occurring in dense nanowire arrays, has a crucial impact on the evolution of nanowire crystal structure. We observe that the onset of Ga flux shadowing, dependent on array pitch and nanowire length, is accompanied by an increase of the wurtzite formation rate. Our results moreover reveal the paramount role of the secondary reflected Ga flux for VLS NW growth (specifically, that flux that is reflected directly into the liquid Ga droplet).

4.
Nanoscale Adv ; 1(5): 1893-1900, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134215

RESUMO

We demonstrate the top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation of pre-patterned GaN(0001) layers grown by hydride vapor phase epitaxy on Al2O3. Arrays with nanowire diameters and spacings ranging from 50 to 90 nm and 0.1 to 0.7 µm, respectively, are simultaneously produced under identical conditions. The sublimation process, carried out under high vacuum conditions, is analyzed in situ by reflection high-energy electron diffraction and line-of-sight quadrupole mass spectrometry. During the sublimation process, the GaN(0001) surface vanishes, giving way to the formation of semi-polar {11̄03} facets which decompose congruently following an Arrhenius temperature dependence with an activation energy of (3.54 ± 0.07) eV and an exponential prefactor of 1.58 × 1031 atoms per cm2 per s. The analysis of the samples by low-temperature cathodoluminescence spectroscopy reveals that, in contrast to dry etching, the sublimation process does not introduce nonradiative recombination centers at the nanowire sidewalls. This technique is suitable for the top-down fabrication of a variety of ordered nanostructures, and could possibly be extended to other material systems with similar crystallographic properties such as ZnO.

5.
J Appl Crystallogr ; 50(Pt 3): 673-680, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28656032

RESUMO

Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In0.15Ga0.85As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

6.
Nano Lett ; 15(2): 981-9, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25631459

RESUMO

We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

7.
Nano Lett ; 14(5): 2604-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678901

RESUMO

Efficient infrared light emitters integrated on the mature Si technology platform could lead to on-chip optical interconnects as deemed necessary for future generations of ultrafast processors as well as to nanoanalytical functionality. Toward this goal, we demonstrate the use of GaAs-based nanowires as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates. Free-standing (In,Ga)As/GaAs coaxial multishell nanowires were grown catalyst-free on Si(111) by molecular beam epitaxy. The emission properties of single radial quantum wells were studied by cathodoluminescence spectroscopy and correlated with the growth kinetics. Controlling the surface diffusivity of In adatoms along the NW side-walls, we improved the spatial homogeneity of the chemical composition along the nanowire axis and thus obtained a narrow emission spectrum. Finally, we fabricated a light-emitting diode consisting of approximately 10(5) nanowires contacted in parallel through the Si substrate. Room-temperature electroluminescence at 985 nm was demonstrated, proving the great potential of this technology.

8.
ACS Nano ; 3(6): 1587-93, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19425540

RESUMO

Top-gated silicon nanowire transistors are fabricated by preparing all terminals (source, drain, and gate) on top of the nanowire in a single step via dose-modulated e-beam lithography. This outperforms other time-consuming approaches requiring alignment of multiple patterns, where alignment tolerances impose a limit on device scaling. We use as gate dielectric the 10-15 nm SiO(2) shell naturally formed during vapor-transport growth of Si nanowires, so the wires can be implemented into devices after synthesis without additional processing. This natural oxide shell has negligible leakage over the operating range. Our single-step patterning is a most practical route for realization of short-channel nanowire transistors and can be applied to a number of nanodevice geometries requiring nonequivalent electrodes.

9.
Nanotechnology ; 20(24): 245702, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471082

RESUMO

We report on the use of interferometric autocorrelation measurements to investigate the non-linear absorption processes evident in single InGaN/GaN quantum dots. The near quadratic excitation intensity dependence of the photoluminescence signal in conjunction with the asymmetric collinear autocorrelation trace unambiguously confirms the process as being one involving two photons via an intermediate virtual state. These results highlight the inherently non-linear optical properties of these structures.


Assuntos
Gálio/química , Índio/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pontos Quânticos , Espectrometria de Fluorescência/métodos , Gálio/efeitos da radiação , Índio/efeitos da radiação
10.
Phys Rev Lett ; 99(19): 197403, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-18233112

RESUMO

We report direct evidence for the control of the oscillator strength of the exciton state in a single quantum dot by the application of a vertical electric field. This is achieved through the study of the radiative lifetime of a single InGaN-GaN quantum dot in a p-i-n diode structure. Our results are in good quantitative agreement with theoretical predictions from an atomistic tight-binding model. Furthermore, the increase of the overlap between the electron and hole wave functions due to the applied field is shown experimentally to increase the attractive Coulomb interaction leading to a change in the sign of the biexcitonic binding energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...