Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16971, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484313

RESUMO

In the present study, we aimed to develop a fast, non-toxic ultrasonic-assisted technique for the preparation of graphene oxide (GO) and GO that were accessorized with Fe3O4 (GO-Fe3O4) for enzyme immobilization. The structural properties of nanosheets were determined by FTIR, XRD, and SEM. Immobilized enzymes on the GO-Fe3O4 and GO were counted. Enzyme activity, reusability, and improvements in enzyme stability were studied. According to the results, the immobilization efficiency was 256.86 mg ficin/GO (g), and 253.63 mg ficin/GO-Fe3O4 (g). Furthermore, immobilized ficin was affected in terms of stability by variations in pH and temperature. The immobilized ficin on the GO-Fe3O4 could be easily recycled from the reaction medium by applying external magnetic separation, involving 10 cycles for 120 days. Over this period and with this number of cycles, the immobilized enzyme on the GO-Fe3O4 retained 74% of its original activity, whereas the immobilized enzyme on the GO was recycled from the reaction medium after centrifuging, thereby retaining 70% of its original activity. Thus, GO and GO-Fe3O4 nanosheets were obtained efficiently from the ultrasonic-assisted technique and can be regarded as excellent nanocarriers for enzyme immobilization.

2.
Int J Biol Macromol ; 209(Pt A): 1422-1429, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461871

RESUMO

Magnetic nanoparticle coated with manganese­aluminum layered double hydroxide (Fe3O4/Mg-Al-CO3-LDH) was prepared and used as porous support for ficin (EC 3.4.22.3) as a model enzyme. Structural characteristics were studied by XRD, FTIR, SEM and light scattering. The quantity of immobilized ficin on the mentioned LDH and non-magnetic LDH was measured and enzyme activity, stability and reusability were compared. Results revealed that the core and shell structure of Fe3O4/Mg-Al-CO3-LDH makes it better dispersion compared to the pristine Mg-Al-CO3-LDH. Ficin showed strong affinity to absorption of the surface of mentioned LDHs nanosheet especially magnetic LDH, confirmed that the existence of Fe3O4 in the core structure of magnetic Fe3O4/Mg-Al-CO3-LDH caused better dispersion of LDH nanocrystal shell compared to pristine LDH moreover, enzyme which immobilized on the magnetic LDH supports, can be recovered by magnetic interaction. The storage stability of free ficin, immobilized ficin on the Mg-Al-CO3-LDH and Fe3O4/Mg-Al-CO3-LDH during a period of 120 days lost about 75%, 30%, and 20% of their initial activities, respectively.


Assuntos
Ficina , Hidróxidos , Enzimas Imobilizadas/química , Hidróxidos/química , Fenômenos Magnéticos , Magnetismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA