Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6756-6771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37818677

RESUMO

Understanding large-scale drivers of biodiversity in palustrine wetlands is challenging due to the combined effects of macroclimate and local edaphic conditions. In boreal and temperate fen ecosystems, the influence of macroclimate on biodiversity is modulated by hydrological settings across habitats, making it difficult to assess their vulnerability to climate change. Here, we investigate the influence of macroclimate and edaphic factors on three Essential Biodiversity Variables across eight ecologically defined habitats that align with ecosystem classifications and red lists. We used 27,555 vegetation plot samples from European fens to assess the influence of macroclimate and groundwater pH predictors on the geographic distribution of each habitat type. Additionally, we modeled the relative influence of macroclimate, water pH, and water table depth on community species richness and composition, focusing on 309 plant specialists. Our models reveal strong effects of mean annual temperature, diurnal thermal range, and summer temperature on biodiversity variables, with contrasting differences among habitats. While macroclimatic factors primarily shape geographic distributions and species richness, edaphic factors emerge as the primary drivers of composition for vascular plants and bryophytes. Annual precipitation exhibits non-linear effects on fen biodiversity, with varying impact across habitats with different hydrological characteristics, suggesting a minimum requirement of 600 mm of annual precipitation for the occurrence of fen ecosystems. Our results anticipate potential impacts of climate warming on European fens, with predictable changes among habitat types and geographic regions. Moreover, we provide evidence that the drivers of biodiversity in boreal and temperate fens are closely tied to the ecological characteristics of each habitat type and the dispersal abilities of bryophytes and vascular plants. Given that the influence of macroclimate and edaphic factors on fen ecosystems is habitat specific, climate change research and conservation actions should consider ecological differentiation within functional IUCN ecosystems at continental and regional scales.


Assuntos
Briófitas , Traqueófitas , Ecossistema , Biodiversidade , Áreas Alagadas , Plantas
2.
Ecol Evol ; 13(4): e9988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082320

RESUMO

Climate change-driven vegetation changes can alter the ecosystem functions of northern peatlands. Several case studies have documented fen-to-bog transition (FBT) over recent decades, which can have major implications, as increased bog growth would likely cause cooling feedback. However, studies beyond individual cases are missing to infer if a common trajectory or many alternatives of FBT are in progress. We explored plant community and hydrology patterns during FBT of 23 boreal aapa mire complexes in Finland. We focused on mires where comparisons of historical (1940-1970) and new (2017-2019) aerial photographs indicated an expansion of Sphagnum-dominated zones. Vegetation plot and water chemistry data were collected from string-flark fens, transition zones with indications of Sphagnum increase, and bog zones; thus, in a chronosequence with a decadal time span. We ask, is there a common trajectory or many alternatives of FBT in progress, and what are the main characteristics (species and traits) of transitional plant communities? We found a pattern of fen-bog transitions via an increase in Sphagnum sect. Cuspidata (mainly S. majus and S. balticum), indicating a consistently high water table. Indicators only of transitional communities were scarce (Sphagnum lindbergii), but FBT had apparently facilitated shallow-rooted aerenchymatous vascular plants, especially Scheuchzeria palustris. Water pH consistently reflected the chronosequence with averages of 4.2, 3.9, and 3.8, from fen to transition and bog zones. Due to weak minerotrophy of string-flark fens, species richness increased towards bogs, but succession led to reduced beta diversity and homogenization among bog sites. Decadal chronosequence suggested a future fen-bog transition through a wet phase, instead of a drying trend. Transitional poor-fen vegetation was characterized by the abundance of Sphagnum lindbergii, S. majus, and Scheuchzeria palustris. Sphagnum mosses likely benefit from longer growing seasons and consistently wet and acidic conditions of aapa mires.

3.
Environ Sci Technol ; 56(22): 15661-15671, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326287

RESUMO

The smallest fraction of plastic pollution, submicron plastics (SMPs <1 µm) are expected to be ubiquitous in the environment. No information is available about SMPs in peatlands, which have a key role in sequestering carbon in terrestrial ecosystems. It is unknown how these plastic particles might behave and interact with (micro)organisms in these ecosystems. Here, we show that the chemical composition of polystyrene (PS) and poly(vinyl chloride) (PVC)-SMPs influenced their adsorption to peat. Consequently, this influenced the accumualtion of SMPs by Sphagnum moss and the composition and diversity of the microbial communities in peatland. Natural organic matter (NOM), which adsorbs from the surrounding water to the surface of SMPs, decreased the adsorption of the particles to peat and their accumulation by Sphagnum moss. However, the presence of NOM on SMPs significantly altered the bacterial community structure compared to SMPs without NOM. Our findings show that peatland ecosystems can potentially adsorb plastic particles. This can not only impact mosses themselves but also change the local microbial communities.


Assuntos
Microbiota , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/microbiologia , Solo/química , Adsorção , Plásticos , Bactérias
4.
Nature ; 610(7932): 513-518, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224387

RESUMO

As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of 'living in harmony with nature'1,2. Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management3. Ecosystems vary in their biota4, service provision5 and relative exposure to risks6, yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth's ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Política Ambiental , Biodiversidade , Biota , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Objetivos , Nações Unidas , Animais
5.
Front Plant Sci ; 13: 974251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160957

RESUMO

Melting permafrost mounds in subarctic palsa mires are thawing under climate warming and have become a substantial source of N2O emissions. However, mechanistic insights into the permafrost thaw-induced N2O emissions in these unique habitats remain elusive. We demonstrated that N2O emission potential in palsa bogs was driven by the bacterial residents of two dominant Sphagnum mosses especially of Sphagnum capillifolium (SC) in the subarctic palsa bog, which responded to endogenous and exogenous Sphagnum factors such as secondary metabolites, nitrogen and carbon sources, temperature, and pH. SC's high N2O emission activity was linked with two classes of distinctive hyperactive N2O emitters, including Pseudomonas sp. and Enterobacteriaceae bacteria, whose hyperactive N2O emitting capability was characterized to be dominantly pH-responsive. As the nosZ gene-harboring emitter, Pseudomonas sp. SC-H2 reached a high level of N2O emissions that increased significantly with increasing pH. For emitters lacking the nosZ gene, an Enterobacteriaceae bacterium SC-L1 was more adaptive to natural acidic conditions, and N2O emissions also increased with pH. Our study revealed previously unknown hyperactive N2O emitters in Sphagnum capillifolium found in melting palsa mound environments, and provided novel insights into SC-associated N2O emissions.

6.
Curr Microbiol ; 79(2): 56, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982223

RESUMO

N2O, a greenhouse gas, is increasingly emitted from degrading permafrost mounds of palsa mires because of the global warming effects on microbial activity. In the present study, we hypothesized that N2O emission could be affected by a change in pH conditions because the collapse of acidic palsa mounds (pH 3.4-4.6) may result in contact with minerogenic ground water (pH 4.8-6.3), thereby increasing the pH. We compared the effects of pH change on N2O emission from cultures inoculated with peat suspensions. Peat samples were collected on a transect from a still intact high part to the collapsing edge of a degrading palsa mound in northwestern Finland, assuming the microbial communities could be different. We adjusted the pH of peat suspensions prepared from a collapsing palsa mound and compared the N2O emission in a pH gradient from 4.5 to 8.5. The collapsing edge had the highest N2O emission from the peat suspensions among all points on the transect under natural acidic conditions (pH 4.5). The N2O emission was reduced with a moderate rise in pH (pH 5.0-6.0) by approximately 85% compared with natural acidic level (pH 4.5). The bacterial communities in acidic cultures differed considerably from those in alkaline cultures. When pH was adjusted to alkaline conditions, N2O-emitting bacteria different from those present in acidic conditions appeared to emit N2O. The bacterial communities could be characterized by changing pH conditions after thawing and collapse of permafrost have contrasting impacts on N2O production that calls for further attention in future studies.


Assuntos
Óxido Nitroso , Pergelissolo , Concentração de Íons de Hidrogênio , Óxido Nitroso/análise , Solo , Microbiologia do Solo
7.
Glob Chang Biol ; 28(3): 1023-1037, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748262

RESUMO

Rising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European-scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity-constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty-five fen species showed a statistically significant interaction between pH and temperature (adj p Ë‚ .01). Forty-six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat-dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high-pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.


Assuntos
Briófitas , Sphagnopsida , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Temperatura
8.
Ecol Evol ; 11(12): 7602-7621, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188838

RESUMO

Northern mires (fens and bogs) have significant climate feedbacks and contribute to biodiversity, providing habitats to specialized biota. Many studies have found drying and degradation of bogs in response to climate change, while northern fens have received less attention. Rich fens are particularly important to biodiversity, but subject to global climate change, fen ecosystems may change via direct response of vegetation or indirectly by hydrological changes. With repeated sampling over the past 20 years, we aim to reveal trends in hydrology and vegetation in a pristine boreal fen with gradient from rich to poor fen and bog vegetation. We resampled 203 semi-permanent plots and compared water-table depth (WTD), pH, concentrations of mineral elements, and dissolved organic carbon (DOC), plant species occurrences, community structure, and vegetation types between 1998 and 2018. In the study area, the annual mean temperature rose by 1.0°C and precipitation by 46 mm, in 20-year periods prior to sampling occasions. We found that wet fen vegetation decreased, while bog and poor fen vegetation increased significantly. This reflected a trend of increasing abundance of common, generalist hummock species at the expense of fen specialist species. Changes were the most pronounced in high pH plots, where Sphagnum mosses had significantly increased in plot frequency, cover, and species richness. Changes of water chemistry were mainly insignificant in concentration levels and spatial patterns. Although indications toward drier conditions were found in vegetation, WTD had not consistently increased, instead, our results revealed complex dynamics of WTD as depending on vegetation changes. Overall, we found significant trend in vegetation, conforming to common succession pattern from rich to poor fen and bog vegetation. Our results suggest that responses intrinsic to vegetation, such as increased productivity or altered species interactions, may be more significant than indirect effects via local hydrology to the ecosystem response to climate warming.

9.
Microbes Environ ; 32(4): 390-393, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29109334

RESUMO

Archaeal communities in mineral soils were compared between a boreal forest in Finland and cold-temperate forest in Japan using 16S rRNA gene-targeted high-throughput sequencing. In boreal soils, Thaumarchaeota Group 1.1c archaea predominated and Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea were also detected. In temperate soils, Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea were dominant members at the subsurface, whereas their dominancy was replaced by Thermoplasmata archaea at the subsoil. An analysis of the ammonia monooxygenase subunit A gene of Archaea also indicated the distribution of Thaumarchaeota Group 1.1a-associated and Group 1.1b archaea in these soils.


Assuntos
Euryarchaeota , Microbiota/genética , Microbiologia do Solo , Euryarchaeota/classificação , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Finlândia , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Oxirredutases/genética , RNA Ribossômico 16S/genética , Solo/química , Taiga
10.
Ecol Evol ; 7(19): 7848-7858, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043039

RESUMO

Ecological restoration is expected to reverse the loss of biodiversity and ecosystem services. Due to the low number of well-replicated field studies, the extent to which restoration recovers plant communities, and the factors underlying possible shortcomings, are not well understood even in medium term. We compared the plant community composition of 38 sites comprising pristine, forestry-drained, and 5 or 10 years ago restored peatlands in southern Finland, with special interest in understanding spatial variation within studied sites, as well as the development of the numbers and the abundances of target species. Our results indicated a recovery of community composition 5-10 years after restoration, but there was significant heterogeneity in recovery. Plant communities farthest away from ditches were very similar to their pristine reference already 10 years after restoration. In contrast, communities in the ditches were as far from the target as the drained communities. The recovery appears to be characterized by a decline in the number and abundance of species typical to degraded conditions, and increase in the abundance of characteristic peatland species. However, we found no increase above the drained state in the number of characteristic peatland species. Our results suggest that there is a risk of drawing premature conclusions on the efficiency of ecological restoration with the current practice of short-term monitoring. Our results also illustrate fine-scale within-site spatial variability in the degradation and recovery of the plant communities that should be considered when evaluating the success of restoration. Overall, we find the heterogeneous outcome of restoration observed here promising. However, low recovery in the number of characteristic species demonstrates the importance of prioritizing restoration sites, and addressing the uncertainty of recovery when setting restoration targets. It appears that it is easier to eradicate unwanted species than regain characteristic species by restoration.

11.
Proc Natl Acad Sci U S A ; 114(24): 6238-6243, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559346

RESUMO

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

12.
Sci Total Environ ; 586: 858-869, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28215796

RESUMO

Restoration impact of forestry-drained peatlands on runoff water quality and dissolved organic carbon (DOC) and nutrient export was studied. Eight catchments were included: three mesotrophic (one undrained control, two treatments), two ombrotrophic (one drained control, one treatment) and three oligotrophic catchments (one undrained control, two treatments). Three calibration years and four post-restoration years were included in the data from seven catchments, for which runoff was recorded. For one mesotrophic treatment catchment only one year of pre-restoration and two years of post-restoration water quality data is reported. Restoration was done by filling in and damming the ditches. Water samples were collected monthly-biweekly during the snow-free period; runoff was recorded continuously during the same period. Water quality was estimated for winter using ratios derived from external data. Runoff for non-recorded periods were estimated using the FEMMA model. A high impact on DOC, nitrogen (N) and phosphorus (P) was observed in the mesotrophic catchments, and mostly no significant impact in the nutrient-poor catchments. The DOC load from one catchment exceeded 1000kg (restored-ha)-1 in the first year; increase of DOC concentration from 50 to 250mgl-1 was observed in the other mesotrophic treatment catchment. Impact on total nitrogen export of over 30kg (restored-ha)-1 was observed in one fertile catchment during the first year. An impact of over 5kg (restored-ha)-1 on ammonium export was observed in one year in the mesotrophic catchment. Impact on P export from the mesotrophic catchment was nearly 5kg P (restored-ha)-1 in the first year. The results imply that restoration of nutrient-rich forestry-drained peatlands poses significant risk for at least short term elevated loads degrading the water quality in receiving water bodies. Restoration of nutrient-poor peatlands poses a minor risk in comparison. Research is needed regarding the factors behind these risks and how to mitigate them.

13.
Sci Total Environ ; 537: 268-76, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282761

RESUMO

Degradation of ecosystems is a great concern on the maintenance of biodiversity and ecosystem services. Ecological restoration fights degradation aiming at the recovery of ecosystem functions such as carbon (C) sequestration and ecosystem structures like plant communities responsible for the C sequestration function. We selected 38 pristine, drained and restored boreal peatland sites in Finland and asked i) what is the long-term effect of drainage on the peatland surface layer C storage, ii) can restoration recover ecosystem functioning (surface layer growth) and structure (plant community composition) and iii) is the recovery of the original structure needed for the recovery of ecosystem functions? We found that drainage had resulted in a substantial net loss of C from surface layer of drained sites. Restoration was successful in regaining natural growth rate in the peatland surface layer already within 5 years after restoration. However, the regenerated surface layer sequestered C at a mean rate of 116.3 g m(-2) yr(-1) (SE 12.7), when a comparable short-term rate was 178.2 g m(-2) yr(-1) (SE 13.3) at the pristine sites. The plant community compositions of the restored sites were considerably dissimilar to those of pristine sites still 10 years after restoration. We conclude that ecological restoration can be used to jump-start some key peatland ecosystem functions even without the recovery of original ecosystem structure (plant community composition). However, the re-establishment of other functions like C sequestration may require more profound recovery of conditions and ecosystem structure. We discuss the potential economic value of restored peatland ecosystems from the perspective of their C sequestration function.


Assuntos
Sequestro de Carbono , Recuperação e Remediação Ambiental/métodos , Biodiversidade , Carbono/análise , Conservação dos Recursos Naturais/métodos , Ecossistema , Finlândia , Áreas Alagadas
14.
Biosci Biotechnol Biochem ; 79(12): 2086-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167675

RESUMO

Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with [Formula: see text] but not with [Formula: see text], and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 µg·vial(-1)·day(-1)) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L(-1) E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.


Assuntos
Burkholderia/química , Burkholderia/isolamento & purificação , Óxido Nitroso/química , Folhas de Planta/microbiologia , Sphagnopsida/microbiologia , Acetileno/farmacologia , Burkholderia/efeitos dos fármacos , Burkholderia/metabolismo , Concentração de Íons de Hidrogênio , Óxido Nitroso/metabolismo , Sacarose/farmacologia , Temperatura
15.
Evolution ; 69(1): 90-103, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25319183

RESUMO

Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients. We find little to no evidence for phylogenetic signal in most component descriptors of the ionic gradient, but interspecific variation along the hummock-hollow gradient shows considerable phylogenetic signal. We find support for a change in the rate of niche evolution within the genus-the hummock-forming subgenus Acutifolia has evolved along the multivariate hummock-hollow gradient faster than the hollow-inhabiting subgenus Cuspidata. Because peat mosses themselves create some of the ecological gradients constituting their own habitats, the classic microtopography of Sphagnum-dominated peatlands is maintained by evolutionary constraints and the biological properties of related Sphagnum species. The patterns of phylogenetic signal observed here will instruct future study on the role of functional traits in peatland growth and reconstruction.


Assuntos
Ecossistema , Evolução Molecular , Sphagnopsida/genética , Filogenia
16.
PLoS One ; 7(7): e41142, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848437

RESUMO

BACKGROUND: Many investigators have recognised that a significant proportion of environmental bacteria exist in a viable but non-culturable state on agar plates, and some researchers have also noticed that some of such bacteria clearly recover their growth on matrices other than agar. However, the reason why agar is unsuitable for the growth of some bacteria has not been addressed. METHODOLOGY/PRINCIPAL FINDINGS: According to the guide of a bioassay for swarming inhibition, we identified 5-hydroxymethylfuran-2-carboxylic acid (5-HMFA) and furan-2-carboxylic acid (FA) as factors that inhibit bacterial swarming and likely inhibit extracellular polysaccharide production on agar. The furan-2-carboxylic acids 5-HMFA and FA effectively inhibited the swarming and swimming of several environmental bacteria at concentrations of 1.8 and 2.3 µg L(-1) (13 and 21 nmol L(-1)), respectively, which are equivalent to the concentrations of these compounds in 0.3% agar. On Luria-Bertani (LB) plates containing 1.0% agar that had been previously washed with MeOH, a mixture of 5-HMFA and FA in amounts equivalent to their original concentrations in the unwashed agar repressed the swarming of Escherichia coli K12 strain W3110, a representative swarming bacterium. CONCLUSIONS/SIGNIFICANCE: Agar that contains trace amounts of 5-HMFA and FA inhibits the proliferation of some slow-growing or difficult-to-culture bacteria on the plates, but it is useful for single colony isolation due to the ease of identification of swarmable bacteria as the non-swarmed colonies.


Assuntos
Ágar/química , Meios de Cultura/química , Escherichia coli K12/crescimento & desenvolvimento , Furanos/química , Proliferação de Células , Controle de Qualidade
17.
Proc Natl Acad Sci U S A ; 103(51): 19386-9, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17151199

RESUMO

Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximately 0.2 to 2 g.m(-2).yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Efeito Estufa , Modelos Biológicos , Nitrogênio/análise , Solo/análise , Áreas Alagadas , Europa (Continente) , Fósforo/análise , Análise Espectral
18.
New Phytol ; 163(3): 609-616, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873741

RESUMO

• We studied the effects of increasing levels of atmospheric nitrogen (N) deposition on nutrient limitation of ombrotrophic Sphagnum plants. • Fifteen mires in 11 European countries were selected across a natural gradient of bulk atmospheric N deposition from 0.1 to 2 g/m2  year-1 . Nutritional constraints were assessed based on nutrient ratios of N, phosphorus (P), and potassium (K) in Sphagnum plants collected in hummocks (i.e. relatively drier microhabitats) and in lawns (i.e. relatively wetter microhabitats). • Nutrient ratios in Sphagnum plants increased steeply at low atmospheric N input, but above a threshold of N deposition of c. 1 g/m2  year-1 the N : P and N : K ratios tended to saturation. Increasing atmospheric N deposition was also accompanied by a reduced retention of Ca and Mg in Sphagnum plants and a decreased stem volumetric density in hummock Sphagnum plants. • We suggest a critical load of N deposition in Europe of 1 g/m2  year-1 above which Sphagnum plants change from being N-limited to be K + P colimited, at N : P > 30 and N : K > 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...