Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Aging ; 9(1): 17, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666862

RESUMO

Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aß) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aß- (n = 65) and Aß+ (n = 35) according to their brain Aß load assessed using Aß-PET (positron emission tomography) imaging. Plasma SOST levels, apolipoprotein E gene (APOE) genotype and several putative AD blood-biomarkers including Aß40, Aß42, Aß42/Aß40, neurofilament light (NFL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and phosphorylated tau (p-tau181 and p-tau231) were detected and compared. It was found that plasma SOST levels were significantly higher in the Aß+ group (71.49 ± 25.00 pmol/L) compared with the Aß- group (56.51 ± 22.14 pmol/L) (P < 0.01). Moreover, Spearman's correlation analysis showed that plasma SOST concentrations were positively correlated with brain Aß load (ρ = 0.321, P = 0.001). Importantly, plasma SOST combined with Aß42/Aß40 ratio significantly increased the area under the curve (AUC) when compared with using Aß42/Aß40 ratio alone (AUC = 0.768 vs 0.669, P = 0.027). In conclusion, plasma SOST levels are elevated in cognitively unimpaired older adults at high risk of AD and SOST could complement existing plasma biomarkers to assist in the detection of preclinical AD.

2.
Biotechniques ; 44(2): 217-20, 222, 224, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18330349

RESUMO

The lamda phage Red recombination system has been used to modify plasmid, bacterial artificial chromosome (BAC), and chromosomal DNA in a highly precise and versatile manner Linear double-stranded DNA fragments or synthetic single-stranded oligonucleotides (SSOs) with short flanking homologies (<50 bp) to the target loci can be used as substrates to direct changes, including point mutations, insertions, and deletions. In attempts to explore mechanistic bases under this recombination process, we and others have previously identified factors that influence SSO-mediated single base substitutions. In this report, we focus our study on SSO-mediated deletion on plasmids. We found that SSOs as short as 63 bp were sufficient to mediate deletion as long as 2 kb with efficiency higher than 1%. Strand bias was consistently observed, and SSOs with sequences identical to the nascent lagging strand during replication always resulted in higher efficiency. Unlike SSO-mediated single nucleotide substitution, homology on each side of SSO flanking the fragment to be deleted was important for successful deletion, and abolishing the host methyl-directed mismatch repair (MMR) system did not lead to detectable changes in deletion efficiency. Finally, we showed that by optimizing its design, SSO-mediated deletion was efficient enough to make it possible to manipulate plasmids without selectable markers.


Assuntos
DNA de Cadeia Simples/genética , Engenharia Genética/métodos , Oligonucleotídeos/genética , Plasmídeos/genética , Deleção de Sequência , Sequência de Bases , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Marcadores Genéticos , Genótipo , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...