Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643484

RESUMO

AIMS: The vascular aging process accelerated by type 2 diabetes mellitus (T2DM) is responsible for the elevated risk of associated cardiovascular diseases (CVDs). Metabolic disorder-induced immune senescence has been implicated in multi-organ/tissue damage. Herein, we sought to determine the role of immunosenescence in diabetic vascular aging and to investigate the underlying mechanisms. METHODS AND RESULTS: Aging hallmarks of the immune system appear prior to the vasculature in streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM mice or db/db mice. Transplantation of aged splenocytes or diabetic splenocytes into young mice triggered vascular senescence and injury compared to normal control splenocyte transfer. RNA-seq profile and validation in immune tissues revealed that the Toll-like receptor 4 (TLR4)- Nuclear factor-kappa B (NF-κB) -NLRP3 axis might be the mediator of diabetic premature immunosenescence. The absence of Nlrp3 attenuated immune senescence and vascular aging during T2DM. Importantly, senescent immune cells, particularly T cells, provoked perivascular adipose tissue (PVAT) dysfunction and alternations in its secretome, which in turn impair vascular biology. In addition, senescent immune cells may uniquely affect vasoconstriction via influencing PVAT. Lastly, rapamycin alleviated diabetic immune senescence and vascular aging, which may be partly due to NLRP3 signaling inhibition. CONCLUSION: These results indicated that NLRP3 inflammasome-mediated immunosenescence precedes and drives diabetic vascular aging. The contribution of senescent immune cells to vascular aging is a combined effect of their direct effects and induction of PVAT dysfunction, the latter of which can uniquely affect vasoconstriction. We further demonstrated that infiltration of senescent T cells in PVAT was increased and associated with PVAT secretome alterations. Our findings suggest that blocking the NLRP3 pathway may prevent early immunosenescence and thus mitigate diabetic vascular aging and damage, and targeting senescent T cells or PVAT might also be the potential therapeutic approach.

2.
Pharmacol Res ; 178: 106143, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219871

RESUMO

Vascular senescence is inextricably linked to the onset and progression of cardiovascular diseases (CVDs), which are the main cause of mortality in people with Type 2 diabetes (T2DM). Previous studies have emphasized the importance of chronic aseptic inflammation in diabetic vasculopathy. Here, we found the abnormal activation of NLRP3 inflammasome in the aorta of both old and T2DM mice by immunofluorescence and Western Blot analysis. Histopathological and isometry tension analysis showed that the presence of T2DM triggered or aggravated the increase of vascular aging markers, as well as age-associated vascular impairment and vasomotor dysfunction, which were improved by NLRP3 deletion or inhibition. Differential expression of aortic genes links to senescence activation and vascular remodeling supports the favorable benefits of NLRP3-/- during T2DM. In vitro results based on primary mice aortic endothelial cells (MAECs) and vascular smooth muscle cells (VSMCs) demonstrate that NLRP3 deficiency attenuated premature senescence and restored proliferation and migration capability under-stimulation, and partially ameliorated replicative senescence. These results provide an insight into the critical role of NLRP3 signaling in T2DM-induced vascular aging and loss of vascular homeostasis, and provide the possibility that targeting NLRP3 inflammasome might be a promising strategy to prevent diabetic vascular senescence and associated vascular lesions.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Free Radic Biol Med ; 143: 153-163, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31369842

RESUMO

BACKGROUND: Neointima hyperplasia is the pathological basis of atherosclerosis and restenosis which have been associated with diabetes mellitus (DM). It is controversial for linagliptin and metformin to protect against vascular neointimal hyperplasia caused by DM. Given the combined therapy of linagliptin and metformin in clinical practice, we investigated whether the combination therapy inhibited neointimal hyperplasia in the carotid artery in diabetic rats. METHODS AND RESULTS: Neointima hyperplasia in the carotid artery was induced by balloon-injury in the rats fed with high fat diet (HFD) combined with low dose streptozotocin (STZ) administration. In vitro, vascular smooth muscle cells (VSMCs) were incubated with high glucose (HG, 30 mM) and the proliferation, migration, apoptosis and collagen deposition were analyzed in VSMCs. We found that the combined therapy, not the monotherapy of linagliptin and metformin significantly inhibited the neointima hyperplasia and improved the endothelium-independent contraction in the balloon-injured cardia artery of diabetic rats, which was associated with the inhibition of superoxide (O2-.) production in the cardia artery. In vitro, HG-induced VSMC remodeling was shown as the remarkable upregulation of PCNA, collagan1, MMP-9, Bcl-2 and migration rate as well as the decreased apoptosis rate. Such abnormal changes were dramatically reversed by the combined use of linagliptin and metformin. Moreover, the AMP-activated protein kinase (AMPK)/Nox4 signal pathway was found to mediate VSMC remodeling responding to HG. Linagliptin and metformin were synergistical to target AMPK/Nox4 signal pathway in VSMCs incubated with HG and in the cardia artery of diabetic rats, which was superior to the monotherapy. CONCLUSIONS: We demonstrated that the potential protection of the combined use of linagliptin and metformin on VSMC remodeling through AMPK/Nox4 signal pathway, resulting in the improvement of neointima hyperplasia in diabetic rats. This study provided new therapeutic strategies for vascular stenosis associated with diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperplasia/tratamento farmacológico , Linagliptina/administração & dosagem , Metformina/administração & dosagem , NADPH Oxidase 4/metabolismo , Neointima/metabolismo , Animais , Aorta Torácica/patologia , Artérias Carótidas/patologia , Constrição Patológica/patologia , Endotélio Vascular/metabolismo , Citometria de Fluxo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , NADPH Oxidases/metabolismo , Neointima/tratamento farmacológico , Oxigênio/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Remodelação Vascular , Vasoconstrição , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...