Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 18(1): 69-78, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21110814

RESUMO

Three xanthine oxidase substrates (i.e., xanthine, adenine, and 2-amino-4-hydroxypterin) show a "substrate inhibition" pattern (i.e., slower turnover rates at higher substrate concentrations), whereas another two substrates (i.e., xanthopterin and lumazine) show a "substrate activation" pattern (i.e., higher turnover rates at higher substrate concentrations). Binding of a 6-formylpterin at one of the two xanthine oxidase active sites slows down the turnover rate of xanthine at the adjacent active site from 17.0 s(-1) to 10.5 s(-1), and converts the V-[S] plot from "substrate inhibition" pattern to a classical Michaelis-Menten hyperbolic saturation pattern. In contrast, binding of xanthine at an active site accelerates the turnover rate of 6-formylpterin at the neighboring active site. The experimental results demonstrate that a substrate can regulate the activity of xanthine oxidase via binding at the active sites; or a xanthine oxidase catalytic subunit can simultaneously serve as a regulatory unit. Theoretical simulation based on the velocity equation derived from the extended Michaelis-Menten model shows that the substrate inhibition and the substrate activation behavior in the V-[S] plots could be obtained by introducing cooperative interactions between two catalytic subunits in homodimeric enzymes. The current work confirms that there exist very strong cooperative interactions between the two catalytic subunits of xanthine oxidase.


Assuntos
Xantina Oxidase/metabolismo , Adenina/química , Adenina/farmacologia , Sítios de Ligação , Catálise , Domínio Catalítico , Dimerização , Inibidores Enzimáticos/farmacocinética , Humanos , Modelos Teóricos , Ligação Proteica , Pteridinas/química , Pteridinas/farmacologia , Pterinas/química , Especificidade por Substrato , Xantina/química , Xantina/farmacologia , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/química , Xantopterina/química , Xantopterina/farmacologia
2.
Photochem Photobiol ; 73(4): 439-46, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11332041

RESUMO

Alloxanthine-inhibited xanthine oxidase (XOD) was found to be photoreactivated by irradiation of light of wavelengths in the range of 340-430 nm. The enzyme activity can be fully controlled to be on or off by many dark-light cycles. Electron spin resonance measurement shows the appearance of the molybdenum (V) ion and the reduced form of flavin adenine dinucleotide (FADH.) radical signals after irradiation of the alloxanthine-XOD complex. Electronic-absorption spectrum also shows the bleaching of Fe/S and flavin adenine dinucleotide chromophores at 375 and 450 nm as well as broad-band absorption of FADH. in the range of 500-700 nm. The quantum yield of photoreactivation of the enzyme activity is approximately 0.06. A photoinduced intraenzyme electron-transfer model is proposed to rationalize the photoreactivation process.


Assuntos
Fotoquímica , Xantina Oxidase/efeitos da radiação , Alopurinol/metabolismo , Relação Dose-Resposta à Radiação , Espectroscopia de Ressonância de Spin Eletrônica , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Cinética , Modelos Biológicos , Estrutura Molecular , Molibdênio , Oxipurinol/metabolismo , Oxipurinol/farmacologia , Xantina/metabolismo , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
3.
J Med Chem ; 42(22): 4614-20, 1999 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-10579823

RESUMO

C(60), vitamin E, and three C(60) derivatives (polar 1 and water-soluble C(3)/D(3)C(60)s) were examined for their antioxidant effects on prevention of lipid peroxidation induced by superoxide and hydroxyl radicals. The protection effect on lipid peroxidation was found to be in the sequence: C(60) >/= vitamin E > 1 > none, for liposoluble antioxidants, and C(3)C(60) >> D(3)C(60) > none, for water-soluble ones. Fluorescence quenching of PyCH(2)COOH (Py = pyrene) by both C(3)- and D(3)C(60)s shows that the Stern-Volmer constant, K(SV), is about the same for both quenchers in aqueous solution. Upon addition of liposomes, the fluorescence quenching becomes more efficient: 5-fold higher in K(SV) for C(3)C(60) than for D(3)C(60). When Py(CH(2))(n)()COOH (n = 1, 3, 5, 9, or 15) was incorporated in lipid membranes, the K(SV)s all were small and nearly equal for D(3)C(60) but were quite large and different for C(3)C(60) with the sequence: n = 1 < 3 < 5 < 9 < 15. The better protection effect of C(3)C(60) on lipid peroxidation than that of D(3)C(60) is attributed to its stronger interaction with membranes. Overall, the antioxidation abilities of the compounds examined were rationalized in terms of the number of reactive sites, the location of antioxidant in lipid membranes, and the strength of interactions between antioxidants and membranes.


Assuntos
Antioxidantes/química , Carbono/química , Fulerenos , Peroxidação de Lipídeos , Espectroscopia de Ressonância de Spin Eletrônica , Fluorescência , Radical Hidroxila , Lipossomos , Solubilidade , Relação Estrutura-Atividade , Superóxidos , Vitamina E/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...