Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(49): 20010-20031, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972185

RESUMO

Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I-II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I-II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Calmodulina/fisiologia , Caveolina 3/metabolismo , Ativação do Canal Iônico , Animais , Sítios de Ligação , Encéfalo/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Coração/fisiologia , Humanos , Invertebrados , Periodicidade
2.
Biochemistry ; 56(7): 944-956, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28121131

RESUMO

Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Motivos EF Hand , Mutação , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Eletricidade Estática , Ressonância de Plasmônio de Superfície
3.
Biochemistry ; 53(8): 1241-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495081

RESUMO

Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes, and it is important to understand how this enzyme is regulated. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic and at least in part controlled by several possible phosphorylation sites. We have determined the solution structure of CaM bound to a peptide that contains a phosphorylated threonine corresponding to Thr495 in full size endothelial NOS (eNOS) to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. Our biophysical studies show that phosphorylation of Thr495 introduces electrostatic repulsions between the target sequence and CaM as well as a diminished propensity for the peptide to form an α-helix. The calcium affinity of the CaM-target peptide complex is reduced because of phosphorylation, and this leads to weaker binding at low physiological calcium concentrations. This study provides an explanation for the reduced level of NO production by eNOS carrying a phosphorylated Thr495 residue.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosfopeptídeos/química , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Soluções , Eletricidade Estática
4.
PLoS One ; 8(4): e61765, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626724

RESUMO

NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca(2+) concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca(2+)-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.


Assuntos
Canais de Cálcio Tipo L/química , Calmodulina/metabolismo , Caramujos/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Evolução Biológica , Canais de Cálcio Tipo L/classificação , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/química , Calmodulina/genética , Sequência Conservada , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos , Caramujos/genética
5.
Biochim Biophys Acta ; 1814(12): 1997-2002, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864726

RESUMO

Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~4.3s(-1). No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN-heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS.


Assuntos
Transporte de Elétrons/fisiologia , Mononucleotídeo de Flavina/química , Heme/química , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Bovinos , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/efeitos da radiação , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Biológicos , Óxido Nítrico Sintase Tipo III/efeitos da radiação , Processos Fotoquímicos , Fotólise , Estrutura Terciária de Proteína/fisiologia , Espectroscopia por Absorção de Raios X
6.
Biochim Biophys Acta ; 1784(12): 2065-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18845278

RESUMO

Calmodulin (CaM), the ubiquitous Ca(2+)-sensing protein, consists of two globular domains separated by a flexible central linker that properly orients CaM's globular domains to bind and regulate various intracellular proteins, including the nitric oxide synthase (NOS) enzymes. In the present study we determined that the charge and length of the central linker of CaM has an effect on the binding and activation of the NOS isozymes by using a variety of charge CaM mutants (T79D, S81D, T79D/S81D, S101D and E84R/E87K) and CaM mutants with residues removed (Delta84, Delta83-84, and Delta81-84). Our kinetic and spectropolarimetry results demonstrate that the NOS enzymes are not adversely affected by the CaM mutants with the exceptions of S101D, E84R/E87K and the deletion of residue 84. Electrostatic interactions in the central linker between residues 82-87 in combination with hydrophobic interactions in the globular domains of CaM are important for its tight association to inducible NOS.


Assuntos
Calmodulina/química , Complexos Multiproteicos/química , Óxido Nítrico Sintase Tipo II/química , Substituição de Aminoácidos , Animais , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Quaternária de Proteína/genética , Estrutura Secundária de Proteína/genética , Ratos , Eletricidade Estática
7.
Biochemistry ; 47(46): 12006-17, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18947187

RESUMO

Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.


Assuntos
Cálcio/química , Calmodulina/química , Transferência Ressonante de Energia de Fluorescência , Óxido Nítrico Sintase Tipo I/química , Peptídeos/química , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Biochim Biophys Acta ; 1774(10): 1351-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17890165

RESUMO

The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Calmodulina/genética , Calmodulina/fisiologia , Cátions Bivalentes/metabolismo , Quelantes/metabolismo , Ativação Enzimática/genética , Escherichia coli , Humanos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Ratos
9.
Biochemistry ; 46(28): 8288-300, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580957

RESUMO

Calmodulin (CaM) is a Ca2+ signal transducing protein that binds and activates many cellular enzymes with physiological relevance, including the mammalian nitric oxide synthase (NOS) isozymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). The mechanism of CaM binding and activation to the iNOS enzyme is poorly understood in part due to the strength of the bound complex and the difficulty of assessing the role played by regions outside of the CaM-binding domain. To further elucidate these processes, we have developed the methodology to investigate CaM binding to the iNOS holoenzyme and generate CaM mutant proteins selectively labeled with fluorescent dyes at specific residues in the N-terminal lobe, C-terminal lobe, or linker region of the protein. In the present study, an iNOS CaM coexpression system allowed for the investigation of CaM binding to the holoenzyme; three different mutant CaM proteins with cysteine substitutions at residues T34 (N-domain), K75 (central linker), and T110 (C-domain) were fluorescently labeled with acrylodan or Alexa Fluor 546 C5-maleimide. These proteins were used to investigate the differential association of each region of CaM with the three NOS isoforms. We have also N-terminally labeled an iNOS CaM-binding domain peptide with dabsyl chloride in order to perform FRET studies between Alexa-labeled residues in the N- and C-terminal domains of CaM to determine CaM's orientation when associated to iNOS. Our FRET results show that CaM binds to the iNOS CaM-binding domain in an antiparallel orientation. Our steady-state fluorescence and circular dichroism studies show that both the N- and C-terminal EF hand pairs of CaM bind to the CaM-binding domain peptide of iNOS in a Ca2+-independent manner; however, only the C-terminal domain showed large Ca2+-dependent conformational changes when associated with the target sequence. Steady-state fluorescence showed that Alexa-labeled CaM proteins are capable of binding to holo-iNOS coexpressed with nCaM, but this complex is a transient species and can be displaced with the addition of excess CaM. Our results show that CaM does not bind to iNOS in a sequential manner as previously proposed for the nNOS enzyme. This investigation provides additional insight into why iNOS remains active even under basal levels of Ca2+ in the cell.


Assuntos
Calmodulina/química , Óxido Nítrico Sintase Tipo II/química , Sítios de Ligação , Cálcio/química , Calmodulina/genética , Calmodulina/isolamento & purificação , Cisteína/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Holoenzimas/química , Mutação , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo III/química , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Compostos de Quinolínio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...