Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Sci Signal ; 16(794): eabp9020, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463245

RESUMO

Helicobacter pylori strains that deliver the oncoprotein CagA into gastric epithelial cells are the major etiologic agents of upper gastric diseases including gastric cancer. CagA promotes gastric carcinogenesis through interactions with multiple host proteins. Here, we show that CagA also disrupts Wnt-dependent planar cell polarity (Wnt/PCP), which orients cells within the plane of an epithelium and coordinates collective cell behaviors such as convergent extension to enable epithelial elongation during development. Ectopic expression of CagA in Xenopus laevis embryos impaired gastrulation, neural tube formation, and axis elongation, processes driven by convergent extension movements that depend on the Wnt/PCP pathway. Mice specifically expressing CagA in the stomach epithelium had longer pyloric glands and mislocalization of the tetraspanin proteins VANGL1 and VANGL2 (VANGL1/2), which are critical components of Wnt/PCP signaling. The increased pyloric gland length was due to hyperproliferation of cells at the gland base, where Lgr5+ stem and progenitor cells reside, and was associated with fewer differentiated enteroendocrine cells. In cultured human gastric epithelial cells, the N terminus of CagA interacted with the C-terminal cytoplasmic tails of VANGL1/2, which impaired Wnt/PCP signaling by inducing the mislocalization of VANGL1/2 from the plasma membrane to the cytoplasm. Thus, CagA may contribute to the development of gastric cancer by subverting a Wnt/PCP-dependent mechanism that restrains pyloric gland stem cell proliferation and promotes enteroendocrine differentiation.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/genética , Helicobacter pylori/metabolismo , Polaridade Celular , Mucosa Gástrica/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
6.
Cell Rep ; 38(7): 110364, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172134

RESUMO

Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.


Assuntos
Endoderma/embriologia , Redes Reguladoras de Genes , Genômica , Mesoderma/embriologia , Xenopus/embriologia , Xenopus/genética , Animais , Cromatina/metabolismo , Sequência Consenso/genética , DNA/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica , RNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Nat Commun ; 12(1): 6435, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750371

RESUMO

How morphogen gradients control patterning and growth in developing tissues remains largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two membrane-tethered protein binders that manipulate different aspects of Decapentaplegic (Dpp), a morphogen required for overall patterning and growth of the Drosophila wing. One is "HA trap" based on a single-chain variable fragment (scFv) against the HA tag that traps HA-Dpp to mainly block its dispersal, the other is "Dpp trap" based on a Designed Ankyrin Repeat Protein (DARPin) against Dpp that traps Dpp to block both its dispersal and signaling. Using these tools, we found that, while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust against the absence of Dpp dispersal. Furthermore, despite a critical requirement of dpp for the overall wing growth, neither Dpp dispersal nor direct signaling is critical for lateral wing growth after wing pouch specification. These results challenge the long-standing dogma that Dpp dispersal is strictly required to control and coordinate overall wing patterning and growth.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Asas de Animais/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Microscopia Confocal , Mutação , Transdução de Sinais/genética , Asas de Animais/crescimento & desenvolvimento
9.
BMC Ecol Evol ; 21(1): 147, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325655

RESUMO

BACKGROUND: hes genes are chordate homologs of Drosophila genes, hairy and enhancer of split, which encode a basic helix-loop-helix (bHLH) transcriptional repressor with a WRPW motif. Various developmental functions of hes genes, including early embryogenesis and neurogenesis, have been elucidated in vertebrates. However, their orthologous relationships remain unclear partly because of less conservation of relatively short amino acid sequences, the fact that the genome was not analyzed as it is today, and species-specific genome duplication. This results in complicated gene names in vertebrates, which are not consistent in orthologs. We previously revealed that Xenopus frogs have two clusters of hes5, named "the hes5.1 cluster" and "the hes5.3 cluster", but the origin and the conservation have not yet been revealed. RESULTS: Here, we elucidated the orthologous and paralogous relationships of all hes genes of human, mouse, chicken, gecko, zebrafish, medaka, coelacanth, spotted gar, elephant shark and three species of frogs, Xenopus tropicalis (X. tropicalis), X. laevis, Nanorana parkeri, by phylogenetic and synteny analyses. Any duplicated hes5 were not found in mammals, whereas hes5 clusters in teleost were conserved although not as many genes as the three frog species. In addition, hes5 cluster-like structure was found in the elephant shark genome, but not found in cyclostomata. CONCLUSION: These data suggest that the hes5 cluster existed in the gnathostome ancestor but became a single gene in mammals. The number of hes5 cluster genes were specifically large in frogs.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Humanos , Camundongos , Filogenia , Proteínas Repressoras/genética , Sintenia , Fatores de Transcrição/genética , Peixe-Zebra/genética
10.
Curr Top Dev Biol ; 145: 113-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074528

RESUMO

The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Animais , Biologia do Desenvolvimento , Genômica , Humanos , Ligação Proteica , Medicina Regenerativa
11.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904408

RESUMO

The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.


Assuntos
Proteínas Wnt/metabolismo , Animais , Difusão , Embrião não Mamífero/metabolismo , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Espectrometria de Fluorescência , Proteínas Wnt/análise , Xenopus laevis/metabolismo
12.
Zoological Lett ; 5: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388442

RESUMO

BACKGROUND: In cephalochordates (amphioxus), the notochord runs along the dorsal to the anterior tip of the body. In contrast, the vertebrate head is formed anterior to the notochord, as a result of head organizer formation in anterior mesoderm during early development. A key gene for the vertebrate head organizer, goosecoid (gsc), is broadly expressed in the dorsal mesoderm of amphioxus gastrula. Amphioxus gsc expression subsequently becomes restricted to the posterior notochord from the early neurula. This has prompted the hypothesis that a change in expression patterns of gsc led to development of the vertebrate head during chordate evolution. However, molecular mechanisms of head organizer evolution involving gsc have never been elucidated. RESULTS: To address this question, we compared cis-regulatory modules of vertebrate organizer genes between amphioxus, Branchiostoma japonicum, and frogs, Xenopus laevis and Xenopus tropicalis. Here we show conservation and diversification of gene regulatory mechanisms through cis-regulatory modules for gsc, lim1/lhx1, and chordin in Branchiostoma and Xenopus. Reporter analysis using Xenopus embryos demonstrates that activation of gsc by Nodal/FoxH1 signal through the 5' upstream region, that of lim1 by Nodal/FoxH1 signal through the first intron, and that of chordin by Lim1 through the second intron, are conserved between amphioxus and Xenopus. However, activation of gsc by Lim1 and Otx through the 5' upstream region in Xenopus are not conserved in amphioxus. Furthermore, the 5' region of amphioxus gsc recapitulated the amphioxus-like posterior mesoderm expression of the reporter gene in transgenic Xenopus embryos. CONCLUSIONS: On the basis of this study, we propose a model, in which the gsc gene acquired the cis-regulatory module bound with Lim1 and Otx at its 5' upstream region to be activated persistently in anterior mesoderm, in the vertebrate lineage. Because Gsc globally represses trunk (notochord) genes in the vertebrate head organizer, this cooption of gsc in vertebrates appears to have resulted in inhibition of trunk genes and acquisition of the head organizer and its derivative prechordal plate.

13.
Cell Rep ; 27(10): 2962-2977.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167141

RESUMO

Elucidation of the sequence of events underlying the dynamic interaction between transcription factors and chromatin states is essential. Maternal transcription factors function at the top of the regulatory hierarchy to specify the primary germ layers at the onset of zygotic genome activation (ZGA). We focus on the formation of endoderm progenitor cells and examine the interactions between maternal transcription factors and chromatin state changes underlying the cell specification process. Endoderm-specific factors Otx1 and Vegt together with Foxh1 orchestrate endoderm formation by coordinated binding to select regulatory regions. These interactions occur before the deposition of enhancer histone marks around the regulatory regions, and these TFs recruit RNA polymerase II, regulate enhancer activity, and establish super-enhancers associated with important endodermal genes. Therefore, maternal transcription factors Otx1, Vegt, and Foxh1 combinatorially regulate the activity of super-enhancers, which in turn activate key lineage-specifying genes during ZGA.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Genoma , Fatores de Transcrição Otx/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Xenopus/metabolismo , Zigoto/metabolismo , Animais , Sítios de Ligação , Cromatina/metabolismo , Endoderma/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição Forkhead/genética , Histonas/genética , Histonas/metabolismo , Masculino , Morfolinos/metabolismo , Fatores de Transcrição Otx/antagonistas & inibidores , Fatores de Transcrição Otx/genética , RNA Polimerase II/metabolismo , Proteínas com Domínio T/genética , Transcriptoma , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética
14.
Biol Open ; 8(3)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30651235

RESUMO

hox genes are found as clusters in the genome in most bilaterians. The order of genes in the cluster is supposed to be correlated with the site of expression along the anterior-posterior body axis and the timing of expression during development, and these correlations are called spatial and temporal collinearity, respectively. Here we studied the expression dynamics of all hox genes of the diploid species Xenopus tropicalis in four Hox clusters (A-D) by analyzing high-temporal-resolution RNA-seq databases and the results showed that temporal collinearity is not supported, which is consistent with our previous data from allotetraploid X enopus laevis Because the temporal collinearity hypothesis implicitly assumes the collinear order of gene activation, not mRNA accumulation, we determined for the first time the timing of when new transcripts of hox genes are produced, by detecting pre-spliced RNA in whole embryos with reverse transcription and quantitative PCR (RT-qPCR) for all hoxa genes as well as several selected hoxb, hox c and hoxd genes. Our analyses showed that, coinciding with the RNA-seq results, hoxa genes started to be transcribed in a non-sequential order, and found that multiple genes start expression almost simultaneously or more posterior genes could be expressed earlier than anterior ones. This tendency was also found in hoxb and hoxc genes. These results suggest that temporal collinearity of hox genes is not held during early development of Xenopus.

15.
Biochem Biophys Res Commun ; 509(4): 862-868, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638933

RESUMO

Sox13, a group D member of the Sry-related high-mobility group box (Sox) transcription factor family, is expressed in various tissues including the hair follicle. However, its spatiotemporal expression patterns in the hair follicle and its role in hair development remain to be elucidated. To address these questions, we generated Sox13-LacZ-knock-in mice (Sox13LacZ/+), in which the LacZ reporter gene was inserted in-frame into exon 2, which contains the translation initiation codon. X-gal staining in Sox13LacZ/+ embryos revealed that Sox13 is initially expressed in the epithelial portion of the placode, and subsequently in the hair germ and the hair peg during early hair follicle development. In postnatal catagen and anagen, Sox13 was detected in the epithelial sheath, whereas in telogen, Sox13 was localized in the bulge region, where hair follicle stem cells reside. Immunohistochemistry with an anti-ß-galactosidase antibody and anti-hair keratin antibodies that specifically mark the different layers of the hair follicle revealed that Sox13 was predominantly expressed in the outer root sheath in anagen. However, the integumentary structures of Sox13LacZ/LacZ mice were grossly and histologically indistinguishable from those of wild type mice. These results suggest that although Sox13 is dispensable for epidermal and adnexal development, Sox13 is a useful marker for early hair follicle development.


Assuntos
Autoantígenos/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Análise Espaço-Temporal , Animais , Autoantígenos/análise , Biomarcadores , Conexinas , Embrião de Mamíferos , Folículo Piloso/embriologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/análise , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
16.
Cold Spring Harb Protoc ; 2019(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30131366

RESUMO

Introducing exogenous DNA into an embryo can promote misexpression of a gene of interest via transcription regulated by an attached enhancer-promoter. This protocol describes plasmid DNA microinjection into Xenopus embryos for misexpression of genes after zygotic gene expression begins. It also describes a method for coinjecting a reporter plasmid with mRNA or antisense morpholinos to perform luciferase reporter assays, which are useful for quantitative analysis of cis-regulatory sequences responding to endogenous or exogenous stimuli in embryos.


Assuntos
DNA/administração & dosagem , Regulação da Expressão Gênica no Desenvolvimento , Microinjeções/métodos , Xenopus/embriologia , Animais , Plasmídeos/administração & dosagem
17.
Development ; 145(5)2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29440302

RESUMO

The homeodomain transcription factor Otx2 has essential roles in head and eye formation via the negative and positive regulation of its target genes, but it remains elusive how this dual activity of Otx2 affects cellular functions. In the current study, we first demonstrated that both exogenous and endogenous Otx2 are phosphorylated at multiple sites. Using Xenopus embryos, we identified three possible cyclin-dependent kinase (Cdk) sites and one Akt site, and analyzed the biological activities of phosphomimetic (4E) and nonphosphorylatable (4A) mutants for those sites. In the neuroectoderm, the 4E but not the 4A mutant downregulated the Cdk inhibitor gene p27xic1 (cdknx) and posterior genes, and promoted cell proliferation, possibly forming a positive-feedback loop consisting of Cdk, Otx2 and p27xic1 for cell proliferation, together with anteriorization. Conversely, the 4A mutant functioned as an activator on its own and upregulated the expression of eye marker genes, resulting in enlarged eyes. Consistent with these results, the interaction of Otx2 with the corepressor Tle1 is suggested to be phosphorylation dependent. These data suggest that Otx2 orchestrates cell proliferation, anteroposterior patterning and eye formation via its phosphorylation state.


Assuntos
Padronização Corporal , Proliferação de Células , Fatores de Transcrição Otx/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Quinases Ciclina-Dependentes/metabolismo , Embrião não Mamífero , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Xenopus laevis/genética
18.
Genetics ; 208(2): 673-686, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187504

RESUMO

Studying genes involved in organogenesis is often difficult because many of these genes are also essential for early development. The allotetraploid frog, Xenopus laevis, is commonly used to study developmental processes, but because of the presence of two homeologs for many genes, it has been difficult to use as a genetic model. Few studies have successfully used CRISPR in amphibians, and currently there is no tissue-targeted knockout strategy described in Xenopus The goal of this study is to determine whether CRISPR/Cas9-mediated gene knockout can be targeted to the Xenopus kidney without perturbing essential early gene function. We demonstrate that targeting CRISPR gene editing to the kidney and the eye of F0 embryos is feasible. Our study shows that knockout of both homeologs of lhx1 results in the disruption of kidney development and function but does not lead to early developmental defects. Therefore, targeting of CRISPR to the kidney may not be necessary to bypass the early developmental defects reported upon disruption of Lhx1 protein expression or function by morpholinos, antisense RNA, or dominant negative constructs. We also establish a control for CRISPR in Xenopus by editing a gene (slc45a2) that when knocked out results in albinism without altering kidney development. This study establishes the feasibility of tissue-specific gene knockout in Xenopus, providing a cost-effective and efficient method for assessing the roles of genes implicated in developmental abnormalities that is amenable to high-throughput gene or drug screening techniques.


Assuntos
Inativação Gênica , Xenopus laevis/genética , Animais , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Marcação de Genes , Rim/metabolismo , Proteínas com Homeodomínio LIM/genética , Especificidade de Órgãos/genética , Fenótipo , RNA Guia de Cinetoplastídeos , Fatores de Transcrição/genética , Proteínas de Xenopus/genética
19.
Nat Commun ; 8(1): 1973, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215008

RESUMO

Wnt proteins direct embryonic patterning, but the regulatory basis of their distribution and signal reception remain unclear. Here, we show that endogenous Wnt8 protein is distributed in a graded manner in Xenopus embryo and accumulated on the cell surface in a punctate manner in association with "N-sulfo-rich heparan sulfate (HS)," not with "N-acetyl-rich HS". These two types of HS are differentially clustered by attaching to different glypicans as core proteins. N-sulfo-rich HS is frequently internalized and associated with the signaling vesicle, known as the Frizzled/Wnt/LRP6 signalosome, in the presence of Wnt8. Conversely, N-acetyl-rich HS is rarely internalized and accumulates Frzb, a secreted Wnt antagonist. Upon interaction with Frzb, Wnt8 associates with N-acetyl-rich HS, suggesting that N-acetyl-rich HS supports Frzb-mediated antagonism by sequestering Wnt8 from N-sulfo-rich HS. Thus, these two types of HS clusters may constitute a cellular platform for the distribution and signaling of Wnt8.


Assuntos
Heparitina Sulfato/fisiologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo , Animais , Embrião não Mamífero/metabolismo , Glicosaminoglicanos , Glipicanas/genética , Glipicanas/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
20.
Dev Growth Differ ; 59(6): 526-539, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28791673

RESUMO

From whole genome sequencing of an allotetraploid frog, Xenopus laevis, two homeologous sets (L and S) of four Hox clusters A through D (HoxA.L/S, HoxB.L/S, HoxC.L/S, and HoxD.L/S) and 13 paralogous groups (PGs) with 76 genes were identified, allowing us to carry out the first comprehensive analyses of hox gene expression in vertebrates. Expression of all hox genes during development and in adult tissues was analyzed by RNA-sequencing. The expression levels of most hox genes were similar between homeologs, but in some pairs, large differences were observed and several of these were confirmed by RT-PCR and whole mount in situ hybridization experiments. These results indicate that subfunctionalization of hox genes may have occurred since allotetraploidization. Furthermore, comprehensive analysis of hox gene expression during early development did not agree with the hypothesis of temporal collinearity especially in genes belonging to PG2 to PG10.


Assuntos
Proteínas de Homeodomínio/metabolismo , Animais , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Homeobox/genética , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/genética , Hibridização In Situ , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...