Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 166(6): 569-78, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845360

RESUMO

Since sweetness is one of the most important qualities of many fruits, and since sugars are translocated from leaves to fruits, the present study investigates photosynthetic activity, activity of sugar metabolizing enzymes, sugar content in leaves and fruits and endogenous levels of hydrogen peroxide in leaves of melon plants treated with various dilutions of hydrogen peroxide, a nonspecific signaling molecule in abiotic stress. For this purpose, 4-month-old melon plants were treated with various concentrations (<50mM) of hydrogen peroxide by applying 300 mL per day to the soil of potted plants. The treatments resulted in increased fructose, glucose, sucrose and starch in the leaves and fruits. The most effective concentration of hydrogen peroxide was 20mM. During the day, soluble sugars in leaves were highest at 12:00 h and starch at 15:00 h. Furthermore, the peroxide treatment increased the photosynthetic activity and the activities of chloroplastic and cytosolic fructose-1,6-bisphosphatase, sucrose phosphate synthase and invertases. Thus, our data show that exogenous hydrogen peroxide, applied to the soil, can increase the soluble sugar content of melon fruits.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Peróxido de Hidrogênio/farmacologia , Biomassa , Metabolismo dos Carboidratos/efeitos da radiação , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Cucurbitaceae/enzimologia , Cucurbitaceae/efeitos da radiação , Frutose-Bifosfatase/metabolismo , Frutas/efeitos da radiação , Glucosiltransferases/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Solubilidade/efeitos dos fármacos , Solubilidade/efeitos da radiação , Amido/metabolismo , beta-Frutofuranosidase/metabolismo
2.
Ann Bot ; 98(3): 565-71, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16790464

RESUMO

BACKGROUND AND AIMS: Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS: Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS: Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS: In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.


Assuntos
Betaína/metabolismo , Oryza/metabolismo , Oxigenases/metabolismo , Cloreto de Sódio/metabolismo , Betaína/química , Southern Blotting , Western Blotting , Genes de Plantas , Espectroscopia de Ressonância Magnética , Oryza/genética , Oxigenases/deficiência , Oxigenases/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Rhizobium/genética , Spinacia oleracea/enzimologia , Spinacia oleracea/genética , Temperatura , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA