Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Toxicol ; 43(10): 1447-1461, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37078133

RESUMO

Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.


Assuntos
Daphnia , Saccharomyces cerevisiae , Animais , Humanos , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Ligantes , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Genes Reporter , Daphnia/genética , Daphnia/metabolismo , Drosophila melanogaster/genética , Vertebrados/genética , Vertebrados/metabolismo
2.
Sensors (Basel) ; 22(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746105

RESUMO

We developed a path-planning system for radiation source identification devices using 4π gamma imaging. The estimated source location and activity were calculated by an integrated simulation model by using 4π gamma images at multiple measurement positions. Using these calculated values, a prediction model to estimate the probability of identification at the next measurement position was created by via random forest analysis. The path-planning system based on the prediction model was verified by integrated simulation and experiment for a 137Cs point source. The results showed that 137Cs point sources were identified using the few measurement positions suggested by the path-planning system.


Assuntos
Diagnóstico por Imagem , Planejamento da Radioterapia Assistida por Computador , Radioisótopos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
3.
FEBS Open Bio ; 11(10): 2774-2783, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407562

RESUMO

Juvenile hormones (JHs) are sesquiterpenoids that play important roles in the regulation of growth, metamorphosis, and reproduction in insects. Synthetic JH agonists (JHAs) have been used as insecticides and are categorized as a class of insect growth regulators (IGRs). Natural JHs and synthetic JHAs bind to the JH receptor methoprene-tolerant (Met), which forms a functional JH-receptor complex with steroid receptor coactivators, such as Drosophila melanogaster Taiman (Tai). The ligand-bound Met-Tai complex induces the transcription of JH response genes by binding to specific DNA elements referred to as JH response elements (JHREs). In the present study, we established a reporter gene assay (RGA) for detecting natural JHs and synthetic JHAs in a yeast strain expressing D. melanogaster Met and Tai. The yeast RGA system detected various juvenoid ligands in a dose-dependent manner. The rank order of the ligand potencies of the juvenoids examined in the yeast RGA linearly correlated with those of RGAs for Met-Tai established in mammalian and insect cells. Our new yeast RGA is rapid, easy to handle, cost-effective, and valuable for screening novel JHAs.


Assuntos
Hormônios Juvenis , Metoprene , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Reporter , Hormônios Juvenis/agonistas , Hormônios Juvenis/genética , Mamíferos/genética , Metoprene/metabolismo , Metoprene/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Rev Sci Instrum ; 89(10): 10I101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399972

RESUMO

The behavior of the 1 MeV triton has been studied in order to understand the alpha particle confinement property in the deuterium operation of toroidal fusion devices. To obtain time evolution of the deuterium-tritium (D-T) neutron emission rate where the secondary DT neutron emission rate is approximately 1012 n/s, we designed two high detection efficiency scintillating fiber (Sci-Fi) detectors: a 1 mm-diameter scintillation fiber-based detector Sci-Fi1 and a 2 mm-diameter scintillation fiber-based detector Sci-Fi2. The test in an accelerator-based neutron generator was performed. The result shows that the directionality of each detector is 15° and 25°, respectively. It is found that detection efficiency for DT neutrons is around 0.23 counts/n cm2 for the Sci-Fi1 detector and is around 1.0 counts/n cm2 for the Sci-Fi2 detector.

5.
Toxicol In Vitro ; 37: 15-24, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27544454

RESUMO

Thyroid hormones (THs) are involved in the regulation of metabolic homeostasis during the development and differentiation of vertebrates, particularly amphibian metamorphosis, which is entirely controlled by internal TH levels. Some artificial chemicals have been shown to exhibit TH-disrupting activities. In order to detect TH disruptors for amphibians, we herein developed a reporter assay using yeast strains expressing the thyroid hormone receptors (TRs) α and ß together with the transcriptional coactivator SRC-1, all of which were derived from the frog Xenopus tropicalis (XT). These yeast strains responded to endogenous THs (T2, T3, and T4) in a dose-dependent manner. They detected the TR ligand activities of some artificial chemicals suspected to exhibit TH-disrupting activities, as well as TR ligand activity in river water collected downstream of sewage plant discharges, which may have originated from human excrement. Moreover, the responses of XT TR strains to these endogenous and artificial ligands were stronger than those of yeast strains for human TRα and ß assays, which had previously been established in our laboratory. These results indicate that the yeast reporter assay system for XT TRα and ß is valuable for assessing TR ligand activities in environmental samples that may be particularly potent in amphibians.


Assuntos
Coativador 1 de Receptor Nuclear , Saccharomyces cerevisiae/genética , Receptores alfa dos Hormônios Tireóideos , Receptores beta dos Hormônios Tireóideos , Xenopus/genética , Animais , DNA Complementar/genética , Fezes/química , Genes Reporter , Humanos , Ligantes , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Plasmídeos , Rios/química , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Urina/química
6.
J Pharmacol Toxicol Methods ; 69(3): 245-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24530888

RESUMO

INTRODUCTION: Retinoic acids are essential for embryonic development, tissue organization, and homeostasis and act via retinoic acid receptors (RARs) that form heterodimers with retinoid X receptors (RXRs). Human RARs and RXRs include the three subtypes α, ß, and γ, which have varying distributions and physiological functions among human tissues. Recent reports show that subtype-specific binding of several chemicals to RARs or RXRs may lead to endocrine disruption. To evaluate these ligand-like chemicals, convenient assay systems for each receptor subtype are required. METHODS: We developed reporter assay yeasts to screen ligands for RXR subtype receptor homodimers. To screen RAR ligands, yeasts were engineered to express RAR subtypes with defective RXRα, which fails to bind to coactivators because of its shortened c-terminus. RESULTS: These assay yeasts were validated using known RXR- and RAR-specific ligands and subtype-specific responses were clearly shown. Subtype-specific ligand activities of the suspected chemical RAR or RXR ligands o-t-butylphenol, triphenyltin chloride, tributyltin chloride, and 4-nonylphenol were determined. DISCUSSION: The present assay yeasts may be valuable tools for subtype-specific assessments of unidentified environmental ligand chemicals and receptor-specific pharmaceuticals.


Assuntos
Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Saccharomyces cerevisiae/genética , Tretinoína/metabolismo , Genes Reporter/genética , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...