Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Structure ; 32(5): 536-549.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460519

RESUMO

Overexpression of human epidermal growth factor receptor 2 (HER2) in breast and gastric cancers is associated with a poor prognosis, making it an important therapeutic target. Here, we establish a novel cancer-specific anti-HER2 antibody, H2Mab-214. H2Mab-214 reacts with HER2 on cancer cells, but unlike the therapeutic antibody trastuzumab, it does not react with HER2 on normal cells in flow cytometry measurements. A crystal structure suggests that H2Mab-214 recognizes a structurally disrupted region in the HER2 domain IV, which normally forms a ß-sheet. We show that this misfolding is inducible by site-directed mutagenesis mimicking the disulfide bond defects that also may occur in cancer cells, indicating that the local misfolding in the Cys-rich domain IV governs the cancer-specificity of H2Mab-214. Furthermore, we show that H2Mab-214 effectively suppresses tumor growth in xenograft mouse models. Our findings offer a potential strategy for developing cancer-specific therapeutic antibodies that target partially misfolded cell surface receptors.


Assuntos
Dobramento de Proteína , Receptor ErbB-2 , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor ErbB-2/metabolismo , Receptor ErbB-2/química , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Modelos Moleculares , Feminino , Cristalografia por Raios X , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química , Trastuzumab/farmacologia , Trastuzumab/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico
2.
Biochem Biophys Res Commun ; 696: 149504, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219489

RESUMO

Regulated intramembrane proteolysis (RIP) is a two-step processing mechanism for transmembrane proteins consisting of ectodomain shedding (shedding), which removes the extracellular domain through juxtamembrane processing and intramembrane proteolysis, which processes membrane-anchored shedding products within the transmembrane domain. RIP irreversibly converts one transmembrane protein into multiple soluble proteins that perform various physiological functions. The only requirement for the substrate of γ-secretase, the major enzyme responsible for intramembrane proteolysis of type I transmembrane proteins, is the absence of a large extracellular domain, and it is thought that γ-secretase can process any type I membrane protein as long as it is shed. In the present study, we showed that the shedding susceptible type I membrane protein VIP36 (36 kDa vesicular integral membrane protein) and its homolog, VIPL, have different γ-secretase susceptibilities in their transmembrane domains. Analysis of the substitution mutants suggested that γ-secretase susceptibility is regulated by C-terminal amino acids in the transmembrane domain. We also compared the transmembrane domains of several shedding susceptible membrane proteins and found that each had a different γ-secretase susceptibility. These results suggest that the transmembrane domain is not simply a stretch of hydrophobic amino acids but is an important element that regulates membrane protein function by controlling the lifetime of the membrane-anchored shedding product.


Assuntos
Secretases da Proteína Precursora do Amiloide , Lectinas , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Lectinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Membrana Celular/metabolismo
3.
J Eur Acad Dermatol Venereol ; 38(2): 404-412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37857595

RESUMO

BACKGROUND: Anti-α6ß4 integrin autoantibodies can be observed in some patients with mucous membrane pemphigoid. We have previously identified anti-α6ß4 integrin extracellular domain autoantibodies together with anti-BP180 NC16A antibodies in a patient with DPP-4 inhibitor-induced bullous pemphigoid. However, the significance and impact of anti-α6ß4 integrin antibodies are unknown. OBJECTIVES: To characterize anti-α6ß4 integrin extracellular domain autoantibodies in pemphigoid patients, to determine whether these antibodies inhibit laminin-α6ß4 integrin binding and to observe their systemic effects. METHODS: Anti-α6ß4 integrin autoantibodies were analysed by staining cells expressing the extracellular region of α6ß4 integrin with sera from 20 patients with pemphigoid. The anti-α6ß4 integrin autoantibodies were characterized using different transfectants. The binding of laminins to α6ß4 integrin was studied using cells expressing the activated conformation of α6ß4 integrin and the inhibitory effect of the autoantibodies on the binding of laminins to α6ß4 integrin was tested. Trends in antibody titres and clinical symptoms were quantified and analysed. RESULTS: IgG autoantibodies against the extracellular domain of anti-α6ß4 integrin were found in some patients with pemphigoid. Laminin binding to α6ß4 integrin was observed in the active conformation of α6ß4 integrin, and serum from a patient with a high titre of anti-α6ß4 integrin antibodies inhibited the binding of both laminin-511 and laminin-332 to α6ß4 integrin. α6ß4 integrin is expressed on the basement membrane of both skin and small intestine, and exfoliation was observed in the patient's epidermis and small intestinal epithelium. A reduction in the titre of the anti-α6ß4 integrin antibody was associated with improvement in both skin and gastrointestinal symptoms. CONCLUSIONS: This study demonstrated the presence of anti-α6ß4 integrin extracellular domain-specific autoantibodies in some patients with pemphigoid. In addition, these autoantibodies showed inhibitory activity on α6ß4 integrin-laminin binding. Anti-α6ß4 integrin antibodies can affect the gastrointestinal tract as well as the skin and oral mucosa.


Assuntos
Penfigoide Bolhoso , Humanos , Autoanticorpos , Colágeno Tipo XVII , Autoantígenos , Colágenos não Fibrilares , Laminina , Trato Gastrointestinal , Integrinas
4.
Sci Transl Med ; 15(711): eadi2623, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647387

RESUMO

The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Monoclonais , Macaca fascicularis
5.
Sci Immunol ; 8(81): eadc9324, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000855

RESUMO

Celastrol, a bioactive molecule extracted from the Tripterygium wilfordii plant, has been shown to exhibit anti-inflammatory properties. However, its mechanism of action has not been fully elucidated. Here, we show that celastrol suppresses humoral immune responses and autoimmunity by disabling a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and COMMD8 (COMMD3/8 complex), a signaling adaptor for chemoattractant receptors. Having demonstrated the involvement of the COMMD3/8 complex in a mouse model of rheumatoid arthritis, we identified celastrol as a compound that covalently bound to and dissociated the COMMD3/8 complex. Celastrol inhibited B cell migration, reduced antibody responses, and blocked arthritis progression, recapitulating deficiency of the COMMD3/8 complex. These effects of celastrol were abolished in mice expressing a celastrol-resistant mutant of the COMMD3/8 complex. These findings establish that celastrol exerts immunosuppressive activity by targeting the COMMD3/8 complex. Our study suggests that the COMMD3/8 complex is a potentially druggable target in autoimmune diseases and points to celastrol as a lead pharmacologic candidate in this capacity.


Assuntos
Doenças Autoimunes , Imunidade Humoral , Camundongos , Animais , Autoimunidade , Triterpenos Pentacíclicos
6.
Nat Commun ; 14(1): 620, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739444

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvß3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Plaquetas/metabolismo , Pandemias
7.
Genes Cells ; 28(4): 249-257, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36846946

RESUMO

Wnt2022 was held on November 15th-19th, 2022, in Awaji Yumebutai International Conference Center, Hyogo Prefecture, Japan, as an in-person meeting for the first time in last 3 years. Wnt signaling is a highly conserved pathway among various species. Since Wnt1 was discovered in 1982, a number of studies using many model animals and human samples have revealed that Wnt signaling plays crucial roles in embryonic development, tissue morphogenesis, and regeneration, as well as many other physiological and pathological processes. Since the year 2022 marks the 40th anniversary of Wnt research, we aimed to look back at our research progress and discuss the future direction of this field. The scientific program consisted of plenary lectures, invited talks, short talks selected from abstracts, and poster sessions. Whereas several different Wnt meetings have been held almost every year in Europe and the United States, this was the first Wnt meeting convened in Asia. Therefore, Wnt2022 was highly anticipated to bring together leaders and young scientists from Europe, the United States, and especially Asia and Oceania. In fact, 148 researchers from 21 countries attended this meeting. Although there were travel and administrative restrictions due to COVID-19, the meeting was highly successful in enabling face-to-face discussions.


Assuntos
COVID-19 , Animais , Humanos , Ásia , Japão , Via de Sinalização Wnt
8.
Nat Biomed Eng ; 7(2): 164-176, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344661

RESUMO

Short half-lives in circulation and poor transport across the blood-brain barrier limit the utility of cytokines and growth factors acting as receptor agonists. Here we show that surrogate receptor agonists with longer half-lives in circulation and enhanced transport rates across the blood-brain barrier can be generated by genetically inserting macrocyclic peptide pharmacophores into the structural loops of the fragment crystallizable (Fc) region of a human immunoglobulin. We used such 'lasso-grafting' approach, which preserves the expression levels of the Fc region and its affinity for the neonatal Fc receptor, to generate Fc-based protein scaffolds with macrocyclic peptides binding to the receptor tyrosine protein kinase Met. The Met agonists dimerized Met, inducing biological responses that were similar to those induced by its natural ligand. Moreover, lasso-grafting of the Fc region of the mouse anti-transferrin-receptor antibody with Met-binding macrocyclic peptides enhanced the accumulation of the resulting Met agonists in brain parenchyma in mice. Lasso-grafting may allow for designer protein therapeutics with enhanced stability and pharmacokinetics.


Assuntos
Barreira Hematoencefálica , Peptídeos , Humanos , Animais , Camundongos , Encéfalo , Citocinas , Meia-Vida
9.
bioRxiv ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36451880

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging showed that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Strikingly, cellular cryo-electron tomography revealed dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and found that S protein recognizes integrin α v ß 3 . Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.

10.
PLoS One ; 17(11): e0276289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350893

RESUMO

We proposed a simple hyperbolic positioning method that does not require solving simultaneous quadratic equations. Moreover, we introduced the mathematical concept of a "pencil" into analytical calculations in the hyperbolic positioning method for a better understanding. In many recent studies using positioning biotelemetry, the specific procedure for intersection calculation of hyperbolas has rarely been described. This might be one of two major obstacles, with the other being clock synchronisation among receivers, for positioning biotelemetry users, including potential users. We focus only on the intersection calculation in this paper. Therefore, we propose a novel method and introduce the mathematical concept into analytical calculations. The computing performances of the novel method, an analytical method applying the concept of a pencil, and an approximating method using the Newton-Raphson method were compared regarding positioning correctness, accuracy, and calculation speed. In the novel method, hyperbolas were represented using the parameter θ, which was treated as a discrete variant. The finer the tick-width of the parameter θ, the more accurate was its positioning, but it took slightly longer to calculate. By setting the tick-width to 0.01°, a simulated trajectory was correctly and accurately localised, as in the analytical method which always correctly returned the accurate solution. The approximating method has a major limitation concerning correctness. It returns a single solution regardless of two intersections of hyperbolas; however, the positioning is accurate when the hyperbolas intersect at a single point. This study approached one major difficulty in positioning biotelemetry and will help biotelemetry users overcome this drawback with a simple and intuitive understanding of hyperbolic positioning.


Assuntos
Acústica , Conceitos Matemáticos
11.
J Chem Inf Model ; 62(22): 5607-5621, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36279366

RESUMO

Inhibitors of integrin αVß3 have therapeutic promise for a variety of diseases. Most αVß3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbß3, we searched for pure αVß3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically ß3 E220. By in silico screening of two large chemical libraries for compounds interacting with ß3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVß3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.


Assuntos
Ácido Aspártico , Integrina alfaVbeta3 , Integrina alfaVbeta3/química , Ligantes , Ácido Aspártico/metabolismo , Microscopia Crioeletrônica , Metais/metabolismo , Oligopeptídeos/farmacologia
12.
Cell Rep Methods ; 2(10): 100301, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313806

RESUMO

Image reconstruction by integrating exchangeable single-molecule localization (IRIS) achieves multiplexed super-resolution imaging by high-density labeling with fast exchangeable fluorescent probes. However, previous methods to develop probes for individual targets required a great amount of time and effort. Here, we introduce a method for generating recombinant IRIS probes with a new mutagenesis strategy that can be widely applied to existing antibody sequences. Several conserved tyrosine residues at the base of complementarity-determining regions were identified as candidate sites for site-directed mutagenesis. With a high probability, mutations at candidate sites accelerated the off rate of recombinant antibody-based probes without compromising specific binding. We were able to develop IRIS probes from five monoclonal antibodies and three single-domain antibodies. We demonstrate multiplexed localization of endogenous proteins in primary neurons that visualizes small synaptic connections with high binding density. It is now practically feasible to generate fast-dissociating fluorescent probes for multitarget super-resolution imaging.


Assuntos
Corantes Fluorescentes , Proteínas , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Anticorpos , Fragmentos de Imunoglobulinas
13.
Protein Sci ; 31(11): e4452, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156831

RESUMO

Semaphorins constitute a large family of secreted and membrane-bound proteins that signal through cell-surface receptors, plexins. Semaphorins generally use low-affinity protein-protein interactions to bind with their specific plexin(s) and regulate distinct cellular processes such as neurogenesis, immune response, and organogenesis. Sema6D is a membrane-bound semaphorin that interacts with class A plexins. Sema6D exhibited differential binding affinities to class A plexins in prior cell-based assays, but the molecular mechanism underlying this selectivity is not well understood. Therefore, we performed hybrid in vitro/in silico analysis to examine the binding mode of Sema6D to class A plexins and to identify residues that give rise to the differential affinities and thus contribute to the selectivity within the same class of semaphorins. Our biophysical binding analysis indeed confirmed that Sema6D has a higher affinity for Plexin-A1 than for other class A plexins, consistent with the binding selectivity observed in the previous cell-based assays. Unexpectedly, our present crystallographic analysis of the Sema6D-Plexin-A1 complex showed that the pattern of polar interactions is not interaction-specific because it matches the pattern in the prior structure of the Sema6A-Plexin-A2 complex. Thus, we performed in silico alanine scanning analysis and discovered hotspot residues that selectively stabilized the Sema6D-Plexin-A1 pair via Van der Waals interactions. We then validated the contribution of these hotspot residues to the variation in binding affinity with biophysical binding analysis and molecular dynamics simulations on the mutants. Ultimately, our present results suggest that shape complementarity in the binding interfaces is a determinant for binding selectivity.


Assuntos
Semaforinas , Semaforinas/genética , Semaforinas/química , Semaforinas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Comunicação Celular
14.
Structure ; 30(10): 1411-1423.e4, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981535

RESUMO

Signaling by single-pass transmembrane receptors often involves a formation of ligand-induced receptor dimers with particular conformation, and bivalent receptor binders can modulate receptor functions by inducing different receptor dimer conformations, although such agents are difficult to design. Here, we describe the generation of both antagonistic and agonistic receptor dimerizers toward PlexinB1 (PlxnB1), a receptor for semaphorin 4D (Sema4D), by grafting two different PlxnB1-binding peptides onto the human immunoglobulin G1 (IgG1) Fc protein. The function-modulating activity of a peptide Fc was strongly dependent on the type of the peptide as well as the grafting site, with the best variants showing activity at an nM concentration range. Structural analysis of each peptide-PlxnB1 complex revealed that the agonistic Fc dimerizes PlxnB1 in a face-to-face fashion similar to that induced by Sema4D, whereas antagonistic Fc would induce signaling-incompetent PlxnB1 dimer conformation, enforcing the idea that plexin activation is primarily controlled by the receptor orientation within the dimer.


Assuntos
Receptores de Superfície Celular , Semaforinas , Proteínas Ativadoras de GTPase , Humanos , Imunoglobulina G , Ligantes , Peptídeos , Receptores de Superfície Celular/metabolismo , Receptores Fc , Semaforinas/genética , Semaforinas/metabolismo
15.
Trends Pharmacol Sci ; 43(10): 838-851, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35902282

RESUMO

Decoy receptor proteins that trick viruses to bind to them should be resistant to viral escape because viruses that require entry receptors cannot help but bind decoy receptors. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for coronavirus cell entry. Recombinant soluble ACE2 was previously developed as a biologic against acute respiratory distress syndrome (ARDS) and verified to be safe in clinical studies. The emergence of COVID-19 reignited interest in soluble ACE2 as a potential broad-spectrum decoy receptor against coronaviruses. In this review, we summarize recent developments in preclinical studies using various high-affinity mutagenesis and Fc fusion approaches to achieve therapeutic efficacy of recombinant ACE2 decoy receptor against coronaviruses. We also highlight the relevance of stimulating effector immune cells through Fc-receptor engagement and the potential of using liquid aerosol delivery of ACE2 decoy receptors for defense against ACE2-utilizing coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Receptores Virais , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Commun Biol ; 5(1): 421, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513706

RESUMO

The Wnt signaling pathway plays a critical role in the developmental and physiological processes of metazoans. We previously reported that the Frizzled4 (FZD4) linker domain plays an important role in Norrin binding and signaling. However, the question remains whether the FZD linker contributes to Wnt signaling in general. Here, we show that the FZD linker is involved in Wnt binding and affects downstream Wnt signaling. A FZD4 chimera, in which the linker was swapped with that of the non-canonical receptor FZD6, impairs the binding with WNT3A and suppresses the recruitment of LRP6 and Disheveled, resulting in reduced canonical signaling. A similar effect was observed for non-canonical signaling. A FZD6 chimera containing the FZD1 linker showed reduced WNT5A binding and impaired signaling in ERK, JNK, and AKT mediated pathways. Altogether, our results suggest that the FZD linker plays an important role in specific Wnt binding and intracellular Wnt signaling.


Assuntos
Receptores Frizzled , Via de Sinalização Wnt , Proteínas de Transporte/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Domínios Proteicos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
17.
Sci Transl Med ; 14(650): eabn7737, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35471044

RESUMO

The Omicron (B.1.1.529) SARS-CoV-2 variant contains an unusually high number of mutations in the spike protein, raising concerns of escape from vaccines, convalescent serum, and therapeutic drugs. Here, we analyzed the degree to which Omicron pseudo-virus evades neutralization by serum or therapeutic antibodies. Serum samples obtained 3 months after two doses of BNT162b2 vaccination exhibited 18-fold lower neutralization titers against Omicron than parental virus. Convalescent serum samples from individuals infected with the Alpha and Delta variants allowed similar frequencies of Omicron breakthrough infections. Domain-wise analysis using chimeric spike proteins revealed that this efficient evasion was primarily achieved by mutations clustered in the receptor binding domain but that multiple mutations in the N-terminal domain contributed as well. Omicron escaped a therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective. Angiotensin-converting enzyme 2 (ACE2) decoys are another virus-neutralizing drug modality that are free, at least in theory, from complete escape. Deep mutational analysis demonstrated that an engineered ACE2 molecule prevented escape for each single-residue mutation in the receptor binding domain, similar to immunized serum. Engineered ACE2 neutralized Omicron comparably to the Wuhan strain and also showed a therapeutic effect against Omicron infection in hamsters and human ACE2 transgenic mice. Similar to previous SARS-CoV-2 variants, some sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Vacina BNT162 , COVID-19/terapia , Humanos , Imunização Passiva , Camundongos , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Soroterapia para COVID-19
18.
Sci Transl Med ; 14(632): eaax7706, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171652

RESUMO

Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.


Assuntos
Anticorpos Monoclonais , Mieloma Múltiplo , Anticorpos Monoclonais/uso terapêutico , Humanos
20.
iScience ; 24(11): 103302, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805784

RESUMO

Lasso-grafting (LG) technology is a method for generating de novo biologics (neobiologics) by genetically implanting macrocyclic peptide pharmacophores, which are selected in vitro against a protein of interest, into loops of arbitrary protein scaffolds. In this study, we have generated a neo-capsid that potently binds the hepatocyte growth factor receptor MET by LG of anti-MET peptide pharmacophores into a circularly permuted variant of Aquifex aeolicus lumazine synthase (AaLS), a self-assembling protein nanocapsule. By virtue of displaying multiple-pharmacophores on its surface, the neo-capsid can induce dimerization (or multimerization) of MET, resulting in phosphorylation and endosomal internalization of the MET-capsid complex. This work demonstrates the potential of the LG technology as a synthetic biology approach for generating capsid-based neobiologics capable of activating signaling receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...