Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant Mol Biol ; 111(1-2): 37-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36044152

RESUMO

KEY MESSAGE: This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.


Assuntos
Arabidopsis , Arabidopsis/genética , Fases de Leitura Aberta/genética , Ribossomos/genética , Ribossomos/metabolismo , Códon de Iniciação/genética , Sequência de Aminoácidos , Biossíntese de Proteínas/genética , Regiões 5' não Traduzidas/genética
2.
Sci Rep ; 11(1): 13492, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188116

RESUMO

In this work, we aim to construct a new behavior analysis method by using machine learning. We used two cameras to capture three-dimensional (3D) tracking data of zebrafish, which were analyzed using fuzzy adaptive resonance theory (FuzzyART), a type of machine learning algorithm, to identify specific behavioral features. The method was tested based on an experiment in which electric shocks were delivered to zebrafish and zebrafish swimming was tracked in 3D simultaneously to find electric shock-associated behaviors. By processing the obtained data with FuzzyART, we discovered that distinguishing behaviors were statistically linked to the electric shock based on the machine learning algorithm. Moreover, our system could accept user-supplied data for detection and quantitative analysis of the behavior features, such as the behavior features defined by the 3D tracking analysis above. This system could be applied to discover new distinct behavior features in mutant zebrafish and used for drug administration screening and cognitive ability tests of zebrafish in the future.


Assuntos
Comportamento Animal/fisiologia , Aprendizado de Máquina , Gravação em Vídeo , Peixe-Zebra/fisiologia , Animais
3.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414305

RESUMO

A Saccharomyces cerevisiae mutant strain, NYR20, produces a red pigment owing to adenine auxotrophy. Unlike other yeast adenine biosynthetic mutants, this strain not only produces but also secretes this pigment. Here, we report the NYR20 draft genome sequence, thereby advancing our understanding of pigment secretion mechanisms.

4.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022996

RESUMO

Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , RNA Helicases DEAD-box/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Nucleolina
5.
Microbiol Resour Announc ; 9(40)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004460

RESUMO

Glycoside hydrolases capable of degrading lignocellulose are important for effectively utilizing cellulosic biomass as a next-generation chemical resource. Trichoderma asperellum IC-1 produces various glycoside hydrolases. Here, we report a draft genome sequence of T. asperellum IC-1 to better understand its gene structures and gene regulatory mechanisms.

6.
Sci Rep ; 10(1): 16289, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004976

RESUMO

Upstream open reading frames (uORFs) are present in the 5'-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1517 (1373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica/genética , Fases de Leitura Aberta/genética , Animais , Galinhas/genética , Drosophila melanogaster/genética , Genoma/genética , Humanos , Biossíntese de Proteínas/genética , Peixe-Zebra/genética
7.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033134

RESUMO

Saccharomyces cerevisiae strain P-684 is a yeast isolated from the flowers of Prunus verecunda 'Antiqua,' producing high quantities of malic and succinic acids in sake brewing. Here, we report the draft genome sequence of P-684, enlightening the mechanisms of biosynthesis of these organic acids by this strain.

8.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140459, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474105

RESUMO

In the biological proteins, aspartic acid (Asp) residues are prone to nonenzymatic isomerization via a succinimide (Suc) intermediate. Asp-residue isomerization causes the aggregation and the insolubilization of proteins, and is considered to be involved in various age-related diseases. Although Suc intermediate was considered to be formed by nucleophilic attack of the main-chain amide nitrogen of N-terminal side adjacent residue to the side-chain carboxyl carbon of Asp residue, previous studies have shown that the nucleophilic attack is more likely to proceed via iminol tautomer when the water molecules act as catalysts. However, the full pathway to Suc-intermediate formation has not been investigated, and the experimental analyses for the Asp-residue isomerization mechanism at atomic and molecular levels, such as the analysis of the transition state geometry, are difficult. In the present study, we computationally explored the full pathways for Suc-intermediate formation from Asp residues. The calculations were performed two types of reactant complexes, and all energy minima and TS geometries were optimized using B3LYP density functional methods. As a result, the SI-intermediate formation was divided into three processes, i.e., iminolization, cyclization, and dehydration processes, and the activation energies were calculated to be 26.1 or 28.4 kcal mol-1. These values reproduce the experimental data. The computational results show that abundant water molecules in living organisms are effective catalysts for the Asp-residue isomerization.


Assuntos
Ácido Aspártico/química , Modelos Químicos , Succinimidas/síntese química , Água/química , Amidas , Catálise , Ciclização , Isomerismo , Modelos Moleculares , Nitrogênio , Proteínas/química
9.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299870

RESUMO

Itaconic acid is an important organic acid used in the chemical industry. Aspergillus terreus strain IFO6365 is one of the highest-yielding itaconic acid-producing wild-type strains. Here, we report the draft genome sequence of IFO6365, enhancing the understanding of the role and biosynthesis of itaconic acid in this fungus.

10.
BMC Genomics ; 21(1): 260, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228449

RESUMO

BACKGROUND: Upstream open reading frames (uORFs) in the 5'-untranslated regions (5'-UTRs) of certain eukaryotic mRNAs encode evolutionarily conserved functional peptides, such as cis-acting regulatory peptides that control translation of downstream main ORFs (mORFs). For genome-wide searches for uORFs with conserved peptide sequences (CPuORFs), comparative genomic studies have been conducted, in which uORF sequences were compared between selected species. To increase chances of identifying CPuORFs, we previously developed an approach in which uORF sequences were compared using BLAST between Arabidopsis and any other plant species with available transcript sequence databases. If this approach is applied to multiple plant species belonging to phylogenetically distant clades, it is expected to further comprehensively identify CPuORFs conserved in various plant lineages, including those conserved among relatively small taxonomic groups. RESULTS: To efficiently compare uORF sequences among many species and efficiently identify CPuORFs conserved in various taxonomic lineages, we developed a novel pipeline, ESUCA. We applied ESUCA to the genomes of five angiosperm species, which belong to phylogenetically distant clades, and selected CPuORFs conserved among at least three different orders. Through these analyses, we identified 89 novel CPuORF families. As expected, ESUCA analysis of each of the five angiosperm genomes identified many CPuORFs that were not identified from ESUCA analyses of the other four species. However, unexpectedly, these CPuORFs include those conserved across wide taxonomic ranges, indicating that the approach used here is useful not only for comprehensive identification of narrowly conserved CPuORFs but also for that of widely conserved CPuORFs. Examination of the effects of 11 selected CPuORFs on mORF translation revealed that CPuORFs conserved only in relatively narrow taxonomic ranges can have sequence-dependent regulatory effects, suggesting that most of the identified CPuORFs are conserved because of functional constraints of their encoded peptides. CONCLUSIONS: This study demonstrates that ESUCA is capable of efficiently identifying CPuORFs likely to be conserved because of the functional importance of their encoded peptides. Furthermore, our data show that the approach in which uORF sequences from multiple species are compared with those of many other species, using ESUCA, is highly effective in comprehensively identifying CPuORFs conserved in various taxonomic ranges.


Assuntos
Magnoliopsida/genética , Fases de Leitura Aberta/genética , Arabidopsis/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/genética
11.
J Plant Res ; 133(3): 383-392, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32185672

RESUMO

Sterols are important lipid constituents of cellular membranes in plants and other organisms. Sterol homeostasis is under strict regulation in plants because excess sterols negatively impact plant growth. HIGH STEROL ESTER 1 (HISE1) functions as a negative regulator of sterol accumulation. If sterol production exceeds a certain threshold, excess sterols are detoxified via conversion to sterol esters by PHOSPHOLIPID STEROL ACYL TRANSFERASE 1 (PSAT1). We previously reported that the Arabidopsis thaliana double mutant hise1-3 psat1-2 shows 1.5-fold higher sterol content than the wild type and consequently a severe growth defect. However, the specific defects caused by excess sterol accumulation in plants remain unknown. In this study, we investigated the effects of excess sterols on plants by analyzing the phenotypes and transcriptomes of the hise1-3 psat1-2 double mutant. Transcriptomic analysis revealed that 435 genes were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Gene ontology (GO) enrichment analysis revealed that abiotic and biotic stress-responsive genes including RESPONSIVE TO DESICCATION 29B/LOW-TEMPERATURE-INDUCED 65 (RD29B/LTI65) and COLD-REGULATED 15A (COR15A) were up-regulated in hise1-3 psat1-2 leaves compared with wild-type leaves. Expression levels of senescence-related genes were also much higher in hise1-3 psat1-2 leaves than in wild-type leaves. hise1-3 psat1-2 leaves showed early senescence, suggesting that excess sterols induce senescence of leaves. In the absence of sucrose, hise1-3 psat1-2 exhibited defects in seedling growth and root elongation. Together, our data suggest that excess sterol accumulation disrupts cellular activities of vegetative organs including leaves and roots, resulting in multiple damages to plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Esteróis/metabolismo , Arabidopsis/genética , Mutação
12.
Plant J ; 101(5): 1118-1134, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639235

RESUMO

In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Domínios Proteicos , Fatores de Transcrição/genética , Dedos de Zinco
13.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806745

RESUMO

Itaconic acid is an important organic acid used in the chemical industry. Aspergillus terreus strain TN-484 is a high-itaconic-acid-productivity mutant derived from strain IFO6365. Here, we report the draft genome sequence of strain TN-484, advancing the understanding of the biosynthesis of itaconic acid in filamentous fungi.

14.
Microbiol Resour Announc ; 8(46)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727710

RESUMO

Saccharomyces cerevisiae strain Pf-1 is a yeast isolated from Prunus mume; it potentially can be used to produce wine and traditional Japanese sake. Here, we report the draft genome sequence of this strain. The genomic information will provide a deeper understanding of the brewing characteristics of this strain.

15.
Cancer Sci ; 110(10): 3215-3224, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432603

RESUMO

Patient-derived xenograft (PDX) models are a useful tool in cancer biology research. However, the number of lung cancer PDX is limited. In the present study, we successfully established 10 PDX, including three adenocarcinoma (AD), six squamous cell carcinoma (SQ) and one large cell carcinoma (LA), from 30 patients with non-small cell lung cancer (NSCLC) (18 AD, 10 SQ, and 2 LA), mainly in SCID hairless outbred (SHO) mice (Crlj:SHO-Prkdcscid Hrhr ). Histology of SQ, advanced clinical stage (III-IV), status of lymph node metastasis (N2-3), and maximum standardized uptake value ≥10 when evaluated using a delayed 18 F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) scan was associated with successful PDX establishment. Histological analyses showed that PDX had histology similar to that of patients' surgically resected tumors (SRT), whereas components of the microenvironment were replaced with murine cells after several passages. Next-generation sequencing analyses showed that after two to six passages, PDX preserved the majority of the somatic mutations and mRNA expressions of the corresponding SRT. Two out of three PDX with AD histology had epidermal growth factor receptor (EGFR) mutations (L858R or exon 19 deletion) and were sensitive to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and osimertinib. Furthermore, in one of the two PDX with an EGFR mutation, osimertinib resistance was induced that was associated with epithelial-to-mesenchymal transition. This study presented 10 serially transplantable PDX of NSCLC in SHO mice and showed the use of PDX with an EGFR mutation for analyses of EGFR-TKI resistance.


Assuntos
Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Grandes/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma de Células Grandes/tratamento farmacológico , Carcinoma de Células Grandes/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Pelados , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Plant Biotechnol (Tokyo) ; 36(4): 213-222, 2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31983875

RESUMO

DNA methylation in higher organisms has become an expanding field of study as it often involves the regulation of gene expression. Although Whole Genome Bisulfite Sequencing (WG-BS) based on next-generation sequencing (NGS) is the most versatile method, this is a costly technique that lacks in-depth analytic power. There are no conventional methods based on NGS that enable researchers to easily compare the level of DNA methylation from the practical number of samples handled in the laboratory. Although the targeted BS method based on Sanger sequencing is generally used in this case, it lacks in-depth analytic power. Therefore, we propose a new method that combines the high throughput analytic power of NGS and bioinformatics with the specificity and focus offered by PCR-amplification-based bisulfite sequencing methods. We use in silico size sieving of DNA-fragments and primer matchings instead of whole-fragment alignment in our bioinformatics analyses, and named our method SIMON (Simple Inference for Methylome based On NGS). The results of our targeted BS method based on NGS (SIMON method) show that small variations in DNA methylation patterns can be precisely and efficiently measured at a single nucleotide resolution. SIMON method combines pre-existing techniques to provide a cost-effective technique for in-depth studies that focus on pre-identified loci. It offers significant improvements with regard to workflow and the quality of the acquired DNA methylation information. Because of the high accuracy of the analysis, small variations of DNA methylation levels can be precisely determined even with large numbers of samples and loci.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30533695

RESUMO

Saccharomyces cerevisiae strain Hm-1 is a yeast isolated from the flower of cotton rosemallow. This yeast is used for the production of Seishu, a traditional Japanese refined sake. Here, we report the strain's draft genome sequence. With this genomic information, the brewing characteristics of the strain can be better understood.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30533743

RESUMO

Trebouxiophyceae sp. KSI-1 is a green alga isolated from a seashore hot spring on Satsuma Iojima in Kagoshima, Japan, and is highly tolerant to oxidative stress. Here, we report the draft genome sequence of this strain, thereby providing an insight into the genetic basis for its oxidative stress tolerance.

19.
Plant Cell Physiol ; 59(7): 1385-1397, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415182

RESUMO

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , RNA Helicases DEAD-box/metabolismo , Metilação de DNA , Folhas de Planta/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ilhas de CpG , Citosina/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
20.
Nucleic Acids Res ; 45(15): 8844-8858, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28637336

RESUMO

Specific sequences of certain nascent peptides cause programmed ribosomal arrest during mRNA translation to control gene expression. In eukaryotes, most known regulatory arrest peptides are encoded by upstream open reading frames (uORFs) present in the 5'-untranslated region of mRNAs. However, to date, a limited number of eukaryotic uORFs encoding arrest peptides have been reported. Here, we searched for arrest peptide-encoding uORFs among Arabidopsis thaliana uORFs with evolutionarily conserved peptide sequences. Analysis of in vitro translation products of 22 conserved uORFs identified three novel uORFs causing ribosomal arrest in a peptide sequence-dependent manner. Stop codon-scanning mutagenesis, in which the effect of changing the uORF stop codon position on the ribosomal arrest was examined, and toeprint analysis revealed that two of the three uORFs cause ribosomal arrest during translation elongation, whereas the other one causes ribosomal arrest during translation termination. Transient expression assays showed that the newly identified arrest-causing uORFs exerted a strong sequence-dependent repressive effect on the expression of the downstream reporter gene in A. thaliana protoplasts. These results suggest that the peptide sequences of the three uORFs identified in this study cause ribosomal arrest in the uORFs, thereby repressing the expression of proteins encoded by the main ORFs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Códon de Terminação , Sequência Conservada , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Protoplastos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...