Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Microbiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831032

RESUMO

Most of Earth's prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or 'Candidatus Marinimicrobia') that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria. Reliance on exogenous muropeptides is traceable to the phylum's ancestor, with evidence of vertical inheritance across several classes. This dependency may be widespread across bacteria (16 phyla) based on the absence of key peptidoglycan synthesis genes. These results suggest that uptake of exogenous cell wall components could be a relevant and potentially common survival strategy in energy-limited habitats like the deep biosphere.

2.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445630

RESUMO

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Oxirredução , Filogenia
3.
ISME J ; 16(5): 1464-1472, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35105960

RESUMO

Gas hydrates deposited in subseafloor sediments are considered to primarily consist of biogenic methane. However, little evidence for the occurrence of living methanogens in subseafloor sediments has been provided. This study investigated viable methanogen diversity, population, physiology and potential activity in hydrate-bearing sediments (1-307 m below the seafloor) from the eastern Nankai Trough. Radiotracer experiments, the quantification of coenzyme F430 and molecular sequencing analysis indicated the occurrence of potential methanogenic activity and living methanogens in the sediments and the predominance of hydrogenotrophic methanogens followed by methylotrophic methanogens. Ten isolates and nine representative culture clones of hydrogenotrophic, methylotrophic and acetoclastic methanogens were obtained from the batch incubation of sediments and accounted for 0.5-76% of the total methanogenic sequences directly recovered from each sediment. The hydrogenotrophic methanogen isolates of Methanocalculus and Methanoculleus that dominated the sediment methanogen communities produced methane at temperatures from 4 to 55 °C, with an abrupt decline in the methane production rate at temperatures above 40 °C, which is consistent with the depth profiles of potential methanogenic activity in the Nankai Trough sediments in this and previous studies. Our results reveal the previously overlooked phylogenetic and metabolic diversity of living methanogens, including methylotrophic methanogenesis.


Assuntos
Euryarchaeota , Sedimentos Geológicos , Euryarchaeota/genética , Sedimentos Geológicos/química , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética
4.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27170363

RESUMO

Little is known about the microbial distribution patterns in subseafloor sediments. This study examines microbial diversity and activities in sediments of the Nankai Trough, where biogenic gas hydrates are deposited. Illumina sequencing of 16S rRNA genes revealed that the prokaryotic community structure is correlated with hydrate occurrence and depth but not with the sedimentary facies. The bacterial phyla 'Atribacteria' lineage JS1 and Chloroflexi dominated in all samples, whereas lower taxonomic units of Chloroflexi accounted for community variation related to hydrate saturation. In archaeal communities, 'Bathyarchaeota' was significantly abundant in the hydrate-containing samples, whereas Marine Benthic Group-B dominated in the upper sediments without hydrates. mcrA gene sequences assigned to deeply branching groups and ANME-1 were detected only in hydrate-containing samples. A predominance of hydrogenotrophic methanogens, Methanomicrobiales and Methanobacteriales, over acetoclastic methanogens was found throughout the depth. Incubation tests on hydrate-containing samples with a stable isotope tracer showed anaerobic methane oxidation activities under both low- and seawater-like salinity conditions. These results indicate that the distribution patterns of microorganisms involved in carbon cycling changed with gas hydrate occurrence, possibly because of the previous hydrate dissociation followed by pore water salinity decrease in situ, as previously proposed by a geochemical study at the study site.


Assuntos
Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Microbiologia da Água , Archaea/genética , Bactérias/genética , Euryarchaeota/genética , Metano , Methanobacteriales/genética , Methanomicrobiales/genética , Filogenia , RNA Ribossômico 16S/genética
5.
Environ Microbiol ; 13(12): 3206-18, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21651687

RESUMO

Anaerobic methane-oxidizing archaea (ANME) are known to play an important role in methane flux, especially in marine sediments. The 16S rRNA genes of ANME have been detected in terrestrial freshwater subsurfaces. However, it is unclear whether ANME are actively involved in methane oxidation in these environments. To address this issue, Holocene sediments in the subsurface of the Kanto Plain in Japan were collected for biogeochemical and molecular analysis. The potential activity of the anaerobic oxidation of methane (AOM) (0.38-3.54 nmol cm⁻³ day⁻¹) was detected in sediment slurry incubation experiments with a (13) CH(4) tracer. Higher AOM activity was observed in low-salinity treatment compared with high-salinity condition (20‰), which supports the adaptation of ANME in freshwater habitats. The 16S rRNA sequence analysis clearly revealed the presence of a distinct subgroup of ANME-1, designated ANME-1a-FW. Phylogenetic analysis of the mcrA genes also implied the presence of the distinct subgroup in ANME-1. ANME-1a-FW was found to be the most dominant active group in the archaeal communities on the basis of 16S rRNA analysis (75.0-93.8% of total archaeal 16S rRNA clones). Sulfate-reducing bacteria previously known as the syntrophic bacterial partners of ANME-1 was not detected. Our results showed that ANME-1a-FW is adapted to freshwater habitats and is responsible for AOM in terrestrial freshwater subsurface environments.


Assuntos
Archaea/classificação , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Filogenia , Adaptação Biológica , Anaerobiose , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , DNA Arqueal/genética , Ecossistema , Água Doce/química , Biblioteca Gênica , Sedimentos Geológicos/química , Japão , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética , Salinidade , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...