Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Org Lett ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639400

RESUMO

A traceless site-selective conjugation method, "AJICAP-M", was developed for native antibodies at sites using Fc-affinity peptides, focusing on Lys248 or Lys288. It produces antibody-drug conjugates (ADCs) with consistent drug-to-antibody ratios, enhanced stability, and simplified manufacturing. Comparative in vivo assessment demonstrated AJICAP-M's superior stability over traditional ADCs. This technology has been successfully applied to continuous-flow manufacturing, marking the first achievement in site-selective ADC production. This manuscript outlines AJICAP-M's methodology and its effectiveness in ADC production.

2.
Langmuir ; 40(16): 8483-8492, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38618876

RESUMO

Recombinant protein production is an essential aspect of biopharmaceutical manufacturing, with Escherichia coli serving as a primary host organism. Protein refolding is vital for protein production; however, conventional refolding methods face challenges such as scale-up limitations and difficulties in controlling protein conformational changes on a millisecond scale. In this study, we demonstrate the novel application of flow microreactors (FMR) in controlling protein conformational changes on a millisecond scale, enabling efficient refolding processes and opening up new avenues in the science of FMR technology. FMR technology has been primarily employed for small-molecule synthesis, but our novel approach successfully expands its application to protein refolding, offering precise control of the buffer pH and solvent content. Using interleukin-6 as a model, the system yielded an impressive 96% pure refolded protein and allowed for gram-scale production. This FMR system allows flash changes in the reaction conditions, effectively circumventing protein aggregation during refolding. To the best of our knowledge, this is the first study to use FMR for protein refolding, which offers a more efficient and scalable method for protein production. The study results highlight the utility of the FMR as a high-throughput screening tool for streamlined scale-up and emphasize the importance of understanding and controlling intermediates in the refolding process. The FMR technique offers a promising approach for enhancing protein refolding efficiency and has demonstrated its potential in streamlining the process from laboratory-scale research to industrial-scale production, making it a game-changing technology in the field.

3.
Anal Sci ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504072

RESUMO

This study delves into the functional intricacies of lipoate ligase A (LplA), an enzyme showing great promise in bioconjugation due to its unique capacity for introducing azido groups into proteins without requiring a genetic tag. We aimed to enhance the understanding of LplA's functionality, particularly its substrate tolerance and the reliability of various analytical techniques. A pivotal aspect of our approach was incorporating azido groups into a range of proteins, followed by the addition of the fluorescent molecule Cy3 via click chemistry. Analysis of fluorescent intensity in the altered proteins indicated varying degrees of conjugation. Additionally, phenyl resin-based RP-HPLC facilitated effective separation of modified proteins, unmodified proteins, and remaining fluorescent tags post-separation. SASA analysis provided insights into conjugation trends, guiding the identification of proteins amenable to LplA's tag-free modification. Our findings demonstrate LplA's broad substrate tolerability for protein modification.

4.
ACS Med Chem Lett ; 14(12): 1767-1773, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116449

RESUMO

Bispecific antibodies (BisAbs) are biotherapeutics that amalgamate the specificities of two distinct antibodies into one molecule, however, their engineering requires genetic modification and remains time-consuming. Therefore, we used AJICAP second-generation technology, which drives the production of site-specific conjugation without genetic modification requirements, to generate BisAbs. Using haloketone chemistry as an alternative to maleimide chemistry, we successfully produced site-specific antibody conjugates. Pharmacokinetic studies revealed that the haloketone-based antibody conjugate was stable in the rat plasma. The resultant BisAbs were rigorously evaluated, and surface plasmon resonance measurements and flow cytometry analyses confirmed that the antigen binding remained intact. Additionally, the affinity for the neonatal Fc receptor (FcRn) was retained after conjugation. Further cytotoxicity evaluation emphasized the pronounced activity of the generated BisAbs. This novel approach introduces a fully chemical, site-specific strategy capable of producing BisAbs, heralding a new era in the field of biotherapeutics.

5.
Anal Bioanal Chem ; 415(26): 6461-6469, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702772

RESUMO

Tag-free protein modification has received considerable attention in the field of chemical biology owing to the versatility and simplicity of the reaction sequence. In 2021, a novel tag-free enzymatic modification of antibodies utilizing lipoate ligase A (LplA) was reported to reveal its potential in the production of site-specific antibody conjugates. Primary peptide mapping analysis revealed the biased site specificity of antibodies modified by LplA; however, quantitative analysis remains challenging because of the complicated heterogeneity derived from biased selective modification. In an effort to further understand the site occupancy of LplA-modified antibodies, this study employed numerous unconventional techniques and strategies. Optimization of HPLC conditions and utilization of enzymes such as trypsin, Glu-C, and chymotrypsin significantly increased sequence data coverage. The transition from traditional spectral counting to a more accurate peak area-based label-free quantification helped better analyze peptide modification levels. The results obtained indicate that LplA-induced modifications are specific lysines, particularly the light chain Lys188/190 site, which have an increased modification rate compared to chemically induced modifications. This study not only contributes to the understanding of peptide modification, but also presents an improved methodology that promises to stimulate further research in this field.

6.
Sci Rep ; 13(1): 13221, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580464

RESUMO

We analyzed the X-ray photoelectron spectra (XPS) of carbon 1s states in graphene and oxygen-intercalated graphene grown on SiC(0001) using Bayesian spectroscopy. To realize highly accurate spectral decomposition of the XPS spectra, we proposed a framework for discovering physical constraints from the absence of prior quantified physical knowledge, in which we designed the prior probabilities based on the found constraints and the physically required conditions. This suppresses the exchange of peak components during replica exchange Monte Carlo iterations and makes possible to decompose XPS in the case where a reliable structure model or a presumable number of components is not known. As a result, we have successfully decomposed XPS of one monolayer (1ML), two monolayers (2ML), and quasi-freestanding 2ML (qfs-2ML) graphene samples deposited on SiC substrates with the meV order precision of the binding energy, in which the posterior probability distributions of the binding energies were obtained distinguishably between the different components of buffer layer even though they are observed as hump and shoulder structures because of their overlapping.

7.
Enzyme Microb Technol ; 170: 110287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487431

RESUMO

L-glutamate oxidase (LGOX, EC: 1.4.3.11) is an oxidoreductase that catalyzes L-glutamate deamination. LGOX from Streptomyces sp. X-119-6 is used widely for L-glutamate quantification in research and industrial applications. This enzyme encoded as a single precursor chain that undergoes post-translational cleavage to four fragments by an endogenous protease to become highly active. Efficient preparation of active LGOX by heterologous expression without proteolysis process should be indispensable for wide application of this enzyme. Thus, developing an LGOX that requires no protease treatment should expand the potential applications of recombinant LGOX. In this report, we succeeded in obtaining an active single-chain LGOX by connecting the four fragments of the mature form with insertion of flexible linkers. The most active single-chain mutant showed the similar activity to that of the mature form from Streptomyces sp. X-119-6. The structure of this mutant was determined at 2.9 Å resolution by X-ray crystallography. It was revealed that this single-stranded mutant had the similar conformation to that of mature form. This single-chain LGOX can be produced efficiently and should expand LGOX applications.

8.
Bioconjug Chem ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894324

RESUMO

The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36854184

RESUMO

As the properties of graphene films depend on their stacked atomic layers, their thickness should be accurately controlled to improve their specific properties. However, by existing methods, controlling the homogeneity of graphene films at the atomic level remains difficult. In this work, photo-stimulated structural modifications of few-layer graphene epitaxially grown on 4H-SiC(0001) were studied using Raman scattering spectroscopy and core-level photoemission spectroscopy. Iterative excitation with laser pulses (800nm, 100fs, p-polarized, 250mJ/cm2) changed the graphene-related 2D Raman line, which is composed of three components characterized by their different responses upon photoexcitation: two components decaying at fast and slow rates, and a component highly resistant to excitation. Core-level photoemission spectroscopy revealed that the observed decay of the 2D line was associated with the elimination of carbon atoms from the graphene layers, finally leaving the robust thin film of single-layer graphene by prolonged excitation. Therefore, this work clearly demonstrates the thickness-dependent structural stability of graphene to optical excitation and opens a promising new method for thinning graphene. An underlying mechanism for the photo-stimulated modifications was also proposed.

10.
Cell Rep Methods ; 2(11): 100317, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36447645

RESUMO

Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Vetores Genéticos , Diferenciação Celular/genética
11.
iScience ; 25(11): 105427, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36310645

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an epidemic and spread rapidly all over the world. Because the analysis of host factors other than receptors and proteases has not been sufficiently performed, we attempted to identify and characterize host factors essential for SARS-CoV-2 infection using iPS cells and airway organoids (AO). Based on previous CRISPR screening and RNA-seq data, we found that exocyst complex component 2 (EXOC2) is one important host factor for SARS-CoV-2 infection. The intracellular SARS-CoV-2 nucleocapsid (N) expression level was decreased to 3.7% and the virus copy number in cell culture medium was decreased to 1.6% by EXOC2 knockdown. Consistently, immunostaining results showed that N protein-positive cells were significantly decreased by EXOC2 knockdown. We also found that EXOC2 knockdown downregulates SARS-CoV-2 infection by regulating IFNW1 expression. In conclusion, controlling the EXOC2 expression level may prevent SARS-CoV-2 infection and deserves further study.

12.
iScience ; 25(5): 104289, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573189

RESUMO

The effects of transcription factors on the maintenance and differentiation of human-induced or embryonic pluripotent stem cells (iPSCs/ESCs) have been well studied. However, the importance of posttranscriptional regulatory mechanisms, which cause the quantitative dissociation of mRNA and protein expression, has not been explored in detail. Here, by combining transcriptome and proteome profiling, we identified 228 posttranscriptionally regulated genes with strict upregulation of the protein level in iPSCs/ESCs. Among them, we found 84 genes were vital for the survival of iPSCs and HDFs, including 20 genes that were specifically necessary for iPSC survival. These 20 proteins were upregulated only in iPSCs/ESCs and not in differentiated cells derived from the three germ layers. Although there are still unknown mechanisms that downregulate protein levels in HDFs, these results reveal that posttranscriptionally regulated genes have a crucial role in iPSC survival.

13.
Anal Methods ; 14(22): 2219-2226, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35616084

RESUMO

An analytical methodology, which can quantify nucleic acids, ferritin nanocages, and their complexes in a single injection, was established by means of size-exclusion chromatography hyphenated with inductively coupled plasma mass spectrometry (SEC-ICP-MS). In this study, several oligo-nucleic acids and ferritin (a human-derived cage-shaped protein) were used as model compounds of nucleic acid drugs (NAD) and drug delivery system (DDS) carriers, respectively. A fraction based on the nucleic acid-ferritin complex was completely distinguished from one based on free nucleic acids by SEC separation. The nucleic acids and ferritin were quantified based on the number of phosphorus and sulfur atoms, respectively. The quantification was carried out by an external calibration method using a series of elemental standard solutions without preparing designated standard materials for each drug candidate. The analytical performance, including sensitivity and accuracy, was evaluated to be appropriate for evaluating the medicines already launched in the market. As demonstrated in the latter part of this study, the encapsulation mechanism is possibly regulated by not only the averaged molecular size of nucleic acids but also the surface charge related to the number of (deoxy-) ribonucleotides. We believe that the methodology presented in this study has the potential to accelerate the development of new modalities based on NAD-DDS to realize therapies in the future.


Assuntos
Ferritinas , Ácidos Nucleicos , Cromatografia em Gel , Sistemas de Liberação de Medicamentos , Humanos , Espectrometria de Massas/métodos , NAD
14.
Cell Rep Methods ; 2(2): 100155, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35474962

RESUMO

Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, reproducibility issues, often arising from variability during passaging steps, remain. Here, we describe an improved method for the subculture of human PSCs. The revised method significantly enhances the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing and directed differentiation. Furthermore, the method does not alter PSC characteristics after long-term culture and attenuates the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.


Assuntos
Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Diferenciação Celular/genética
15.
J Phys Condens Matter ; 34(23)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290972

RESUMO

Along with the great interest in two-dimensional elemental materials that has emerged in recent years, atomically thin layers of bismuth have attracted attention due to physical properties on account of a strong spin-orbit coupling. Thickness dependent electronic band structure must be explored over the whole Brillouin zone in order to further explore their topological electronic properties. The anisotropic band structures along zig-zag and armchair directions of α-bismuthene (α-Bi) were resolved using the two-dimensional mapping of angle-resolved photoemission spectra. An increase in the number of layers from 1- to 2-bilayers (BLs) shifts the top of a hole band onΓ¯-X¯1line to high wavenumber regions. Subsequently, an electron pocket onΓ¯-X¯1line and a hole pocket centred atΓ¯point appears in the 3 BL α-Bi. Gapless Dirac-cone features with a large anisotropy were clearly resolved onX¯2point in the 1-BL and 2-BL α-Bi, which can be attributed to the strong spin-orbit coupling and protection by the nonsymmorphic symmetry of the α-Bi lattice.

16.
Commun Biol ; 5(1): 56, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031676

RESUMO

Mimetics of growth factors and cytokines are promising tools for culturing large numbers of cells and manufacturing regenerative medicine products. In this study, we report single-chain tandem macrocyclic peptides (STaMPtides) as mimetics in a new multivalent peptide format. STaMPtides, which contain two or more macrocyclic peptides with a disulfide-closed backbone and peptide linkers, are successfully secreted into the supernatant by Corynebacterium glutamicum-based secretion technology. Without post-secretion modification steps, such as macrocyclization or enzymatic treatment, bacterially secreted STaMPtides form disulfide bonds, as designed; are biologically active; and show agonistic activities against respective target receptors. We also demonstrate, by cell-based assays, the potential of STaMPtides, which mimic growth factors and cytokines, in cell culture. The STaMPtide technology can be applied to the design, screening, and production of growth factor and cytokine mimetics.


Assuntos
Biomimética , Corynebacterium glutamicum , Citocinas/metabolismo , Desenho de Fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos/metabolismo
17.
Mol Ther Nucleic Acids ; 26: 1107-1114, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34692233

RESUMO

It has been reported that many receptors and proteases are required for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Although angiotensin-converting enzyme 2 (ACE2) is the most important of these receptors, little is known about the contribution of other genes. In this study, we examined the roles of neuropilin-1, basigin, transmembrane serine proteases (TMPRSSs), and cathepsins (CTSs) in SARS-CoV-2 infection using the CRISPR interference system and ACE2-expressing human induced pluripotent stem (iPS) cells. Double knockdown of TMPRSS2 and cathepsin B (CTSB) reduced the viral load to 0.036% ± 0.021%. Consistently, the combination of the CTPB inhibitor CA-074 methyl ester and the TMPRSS2 inhibitor camostat reduced the viral load to 0.0078% ± 0.0057%. This result was confirmed using four SARS-CoV-2 variants (B.1.3, B.1.1.7, B.1.351, and B.1.1.248). The simultaneous use of these two drugs reduced viral load to less than 0.01% in both female and male iPS cells. These findings suggest that compounds targeting TMPRSS2 and CTSB exhibit highly efficient antiviral effects independent of gender and SARS-CoV-2 variant.

18.
Bioorg Med Chem Lett ; 51: 128360, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537330

RESUMO

Bioconjugation is an important chemical biology research focus, especially in the development of methods to produce pharmaceutical bioconjugates and antibody-drug conjugates (ADCs). In this report, an enzyme-catalyzed conjugation method combined with a chemical reaction was used to modify a native antibody under mild reaction conditions. Our investigation revealed that lipoic-acid ligase (LplA) modifies native IgG1 with biased site-specificity. An intact mass analysis revealed that 98.3% of IgG1 was modified by LplA and possessed at least one molecule of octanocic acid. The average number of modifications per antibody was calculated to be 4.6. Peptide mapping analysis revealed that the modified residues were K225, K249 and K363 in the Fc region, and K30, K76 and K136 in the heavy chain and K39/K42, K169, K188 and K190 in the light chain of the Fab region. Careful evaluation including solvent exposed amino acid analysis suggested that these conjugate sites were not only solvent exposed but also biased by the site-specificity of LplA. Furthermore, antibody fragment conjugation may be able to take advantage of this enzymatic approach. This feasibility study serves as a demonstration for preparing enzymatically modified antibodies with conjugation site analysis.


Assuntos
Imunoconjugados/química , Imunoglobulina G/química , Ligases/química , Ácido Tióctico/química , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Ligases/imunologia , Estrutura Molecular , Ácido Tióctico/imunologia
19.
Mol Pharm ; 18(11): 4058-4066, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34579528

RESUMO

To overcome a lack of selectivity during the chemical modification of native non-engineered antibodies, we have developed a technology platform termed "AJICAP" for the site-specific chemical conjugation of antibodies through the use of a class of IgG Fc-affinity reagents. To date, a limited number of antibody-drug conjugates (ADCs) have been synthesized via this approach, and no toxicological study was reported. Herein, we describe the compatibility and robustness of AJICAP technology, which enabled the synthesis of a wide variety of ADCs. A stability assessment of a thiol-modified antibody synthesized by AJICAP technology indicated no appreciable increase in aggregation or decomposition upon prolonged storage, indicating that the unexpectedly stable thiol intermediate has a great potential intermediate for payload or linker screening or large-scale manufacturing. Payload conjugation with this stable thiol intermediate generated several AJICAP-ADCs. In vivo xenograft studies indicated that the AJICAP-ADCs displayed significant tumor inhibition comparable to benchmark ADC Kadcyla. Furthermore, a rat pharmacokinetic analysis and toxicology study indicated an increase in the maximum tolerated dose, demonstrating an expansion of the AJICAP-ADC therapeutic index, compared with stochastic conjugation technology. This is the first report of the therapeutic index estimation of site-specific ADCs produced by utilizing Fc affinity reagent conjugation. The described site-specific conjugation technology is a powerful platform to enable next-generation ADCs through reduced heterogeneity and enhanced therapeutic index.


Assuntos
Antineoplásicos/farmacocinética , Composição de Medicamentos/métodos , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico , Ado-Trastuzumab Emtansina/administração & dosagem , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/toxicidade , Química Farmacêutica , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/toxicidade , Dose Máxima Tolerável , Camundongos , Neoplasias/patologia , Ratos , Índice Terapêutico , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Artigo em Inglês | MEDLINE | ID: mdl-34098178

RESUMO

Commercially approved conventional antibody-drug conjugates (ADCs) are produced as heterogeneous mixtures containing a stochastic distribution of payloads decorating the antibody molecules resulting in decreased efficacy and thus lowering their therapeutic index. Control of the DAR and conjugation site in the development of next-generation ADCs is believed to assist in increasing the therapeutic index of these targeted biologics leading to overall enhanced clinical efficacy and reduced toxicity. A chemical site-specific conjugation technology termed AJICAP® allows ADC developers to control both the location and quantity of the payload conjugation to an antibody. Furthermore, this simplified ADC composition enables a streamlined chemical analysis. Here we report the chromatographic separation of site-specific ADCs produced by AJICAP® technology using an analytical affinity chromatography HPLC column containing a recombinant FcγIIIa receptor-ligand immobilized on a non-porous polymer resin (NPR). These HPLC analyses provided visually clear chromatogram results reflecting the heterogeneity of each ADC. The affinity strength was also measured by biolayer interferometry (BLI) and predicted by molecular structure analysis. The results indicate that AJICAP® technology is a promising solution to link hydrophobic payloads to antibodies without compromising antibody receptor function. This study also shows that FcγIIIa-NPR column can be used to characterize site-specific conjugated ADCs compared to ADCs synthesized using conventional methods.


Assuntos
Cromatografia de Afinidade/métodos , Imunoconjugados , Receptores de IgG , Proteínas Recombinantes , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Imunoconjugados/análise , Imunoconjugados/química , Imunoconjugados/metabolismo , Modelos Moleculares , Porosidade , Receptores de IgG/análise , Receptores de IgG/química , Receptores de IgG/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...