Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Dalton Trans ; 53(17): 7517-7521, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597208

RESUMO

In [Mn(5-MeOsalen)(Cl)]2(dibenzo[24]crown-8), dibenzo[24]crown-8 formed a supramolecule via multi-point interactions with the [Mn(5-MeOsalen)(Cl)] dimer. The dimer was magnetically isolated with ST = 4 and weak interdimer magnetic interactions. The crystal exhibited single-molecule magnet behaviour with an anisotropic barrier of 26(1) K, which is the highest among the Mn-salen series reported to date.

2.
Chemistry ; 30(19): e202400047, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278760

RESUMO

Photoswitches are molecules that can absorb light of specific wavelengths and undergo a reversible transformation between their trans and cis isomeric forms. In phenylazo photoswitches, it is common for the less stable cis (Z) isomer to convert back to the more stable trans (E) isomer either through photochemical or thermal means. In this research, we designed new derivatives of phenylazothiazole (PAT) photoswitches, PAT-Fn, which feature fluorine substituents on their phenyl component. These derivatives can reversibly isomerize under visible light exposure with the enrichment of E and Z isomers at photostationary state (PSS). Surprisingly, we observed an unconventional phenomenon when these PAT-Fn (n≧2) photoswitches were in their cis isomeric state in the absence of light. Instead of the anticipated transformation from cis to trans isomer, these compounds converted to an oligomeric compound. Our detailed experimental investigation and theoretical calculations, indicated the crucial role of fluorine substituents and the distinctive geometric arrangement of the cis isomer in driving the unexpected oligomerization process originating from the cis isomeric state.

3.
Nanoscale ; 16(10): 5107-5114, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38227491

RESUMO

Zero-dimensional hybrid copper(I) halides (HCHs) are attractive due to their interesting photoluminescence (PL) properties and the high abundance and low toxicity of copper. In this study, we report green-red dual emission from rhombic 1-butyl-1-methyl piperidinium copper bromide [(Bmpip)2Cu2Br4] microcrystals (MCs) prepared on borosilicate glass. The structure and elemental composition of the MCs are characterized by single crystal X-ray diffraction analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Interestingly, MCs prepared on an ITO-coated glass plate show an intense green emission compared to the dual emission on a bare glass or plastic substrate. Furthermore, the intensity of the green emission from the MC is enormously increased by powdering using a conductive material, suggesting the deactivation of the red-emitting state by a charge transfer interaction with the conductor. These findings open a new strategy to suppress the self-trapping of excitons by longitudinal optical phonons and control the dual emitting states in HCHs.

4.
Inorg Chem ; 62(37): 14942-14948, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656002

RESUMO

Structural changes of the coordination polymer associated with gas adsorption (gate opening-type adsorption) can be linked to bulk physical properties such as magnetism, electrical conductivity, and dielectric properties. To enable real-space sensing applications, it is imperative to have a system where the selective adsorption of mixed gases can be correlated with physical properties. In this report, we demonstrate that a crystalline sample of one-dimensional (1D) coordination polymer exhibits selective CO2 adsorption while simultaneously displaying dielectric switching behavior in a mixed N2/CO2 gas environment. In the crystal of {[Cu2(2-TPA)4(pz)]·CH3CN}n (1·CH3CN), where 2-TPA and pz are 2-thiophencarboxylate and pyrazine, respectively, paddle wheel-type units of [Cu2(2-TPA)4] are bridged by pz, forming a 1D chain structure. One of the two crystallographically independent 2-TPA units was interacted with the pz moiety of the adjacent 1D chain by π···π interactions, forming a two-dimensional (2D) layer parallel to the ab plane. Activated 1 shows selective CO2 adsorption by a gate opening-type adsorption mechanism, indicating that the CO2 adsorption process is accompanied by a structural change. The change in the real part of dielectric permittivity (ε') under the mixed N2/CO2 gas flow is a result of the selective CO2 adsorption, which was supported by the enthalpy changes (ΔH) associated with CO2 adsorption in two methods: CO2 adsorption isotherms and temperature-dependent measurements of ε' under a mixed N2/CO2 gas flow. The calculated ΔH values were found to be in good agreement across both methods. The CO2 ratio in the mixed N2/CO2 gas flow increased, and the switching ratio of ε' (Δε') also increased. Notably, Δε' exhibited a marked increase beyond the pressure required for gate opening adsorption.

5.
J Am Chem Soc ; 145(16): 9072-9080, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043415

RESUMO

A novel class of photoswitches based on a phenylazothiazole scaffold that undergoes reversible isomerization under visible-light irradiation is reported. The photoswitch, which comprises a thiazole heteroaryl segment directly connected to a phenyl azo chromophore, has very different spectral characteristics, such as a redshifted absorption maximum wavelength and well-separated absorption bands of the trans and cis isomers, than conventional azobenzene and other heteroaryl azo compounds. Substituents at the ortho and para positions of the phenyl ring of the photoswitch resulted in a further shift to longer wavelengths up to 525 nm at the absorption maximum with a small thermal stability compensation. These photoswitches showed excellent photostationary distributions of the trans and cis isomers, thermal half-lives of up to 7.2 h, and excellent reductant stability. The X-ray crystal structure analysis revealed that the trans isomers exhibited a planar geometry and the cis isomers exhibited a T-shaped orthogonal geometry. Detailed ab initio calculations further demonstrated the plausible electronic transitions and isomerization energy barriers, which were consistent with the experimental observations. The fundamental design principles elucidated in this study will aid in the development of a wide variety of visible-light photoswitches for photopharmacological applications.

6.
Inorg Chem ; 62(3): 1257-1263, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36633147

RESUMO

A glass-crystal composite (g-NCP/PCP), comprising a glassy nonporous coordination polymer (g-NCP) and a crystalline porous coordination polymer (PCP)/metal-organic framework, was synthesized by using a melt-quenched method. Compared to that of the PCP itself, g-NCP/PCP has an enhanced gas adsorption selectivity. The results should stimulate further studies of the chemistry of g-NCP/PCP glass-crystal composites.


Assuntos
Estruturas Metalorgânicas , Polímeros , Polímeros/química , Adsorção , Porosidade
7.
Angew Chem Int Ed Engl ; 61(45): e202211686, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36104981

RESUMO

A rigid hydrogen-bonded organic framework (HOF) was constructed from a C3 -symmetric hexatopic carboxylic acid with a hydrophilic 18-crown-6-ether (18C6) component. Despite the flexible macrocyclic structure with many conformations, the derivative with three 4,4'-dicarboxy-o-terphenyl moieties in the periphery yielded a rigid layered porous framework through directional intermolecular hydrogen bonding. Interestingly, the HOF possesses 1D channels with bottleneck composed of 18C6 rings. The HOF shows proton conductivity (1.12×10-7  S cm-1 ) through Grotthuss mechanism (Ea =0.27 eV) under 98 %RH. The present unique water channel structure provides an inspiration to create molecular porous materials.

8.
RSC Adv ; 12(33): 21280-21286, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975059

RESUMO

Using Na-encapsulated benzo[18]crown-6 (Na)(B18C6) as a counter cation, we successfully magnetically isolated a fluoride-bridging Dy dinuclear complex {[(PW11O39)Dy(H2O)2]2F} (Dy2POM) with lacunary Keggin ligands. (Na)(B18C6) formed two types of tetramers through C-H⋯O, π⋯π and C-H⋯π interactions, and each tetramer aligned in one dimension along the c-axis to form two types of channels. One channel was partially penetrated by a supramolecular cation from the ±a-axis direction, dividing the channel in the form of a "bamboo node". Dy2POM was spatially divided by this "bamboo node," which magnetically isolated one portion from the other. The temperature dependence of the magnetic susceptibility indicated a weak ferromagnetic interaction between the Dy ions bridged by fluoride. Dy2POM exhibited the magnetic relaxation characteristics of a single-molecule magnet, including the dependence of AC magnetic susceptibility on temperature and frequency. Magnetic relaxation can be described by the combination of thermally active Orbach and temperature-independent quantum tunneling processes. The application of a static magnetic field effectively suppressed the relaxation due to quantum tunneling.

9.
Dalton Trans ; 51(27): 10595-10600, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35781549

RESUMO

[MnCr(oxalate)3]- possesses a two-dimensional ferromagnetic network that is an ideal system for the construction of multifunctional molecular materials based on ferromagnetism. This is because additional functions, such as ferroelectricity, can be hybridised by incorporating functional cations between the layers. However, the majority of [MnCr(oxalate)3]- networks readily incorporate solvent molecules upon crystallisation, and it is sometimes difficult to measure the crystal physical properties because of the collapse associated with desolvation. Upon desolvation, the polar crystal (CBA+)([18]crown-6)[MnCr(oxalate)3]-(CH3OH) (1·CH3OH) (CBA+ = 4-carboxybutan-1-aminium) underwent a crystal-to-crystal transformation to form (CBA+)([18]crown-6)[MnCr(oxalate)3]-, 1. Furthermore, this change was accompanied by hydrogen bond reorganisation in the (CBA+)([18]crown-6) supramolecular assembly. Both crystals exhibited ferromagnetic ordering at approximately 5 K. In crystal 1, a "merry-go-round" motion of [18]crown-6 was observed, with an activation energy of 41.41 kJ mol-1, which resulted in dielectric relaxation. This crystal-to-crystal structural transformation provides a strategy for designing multifunctional hybrid materials, in which an additional function arises from molecular motion.

10.
Inorg Chem ; 61(8): 3379-3386, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35172569

RESUMO

Mechanical force can be employed not only to efficiently synthesize new materials under environmentally friendly conditions but also to change the macroscopic and microscopic properties of materials. Although coordination polymers (CPs) are attractive functional materials because they possess high structural designability and diversity, mechanical force-induced structural and functional changes of CPs are challenging issues. In this study, two one-dimensional CPs, one a densely packed nonporous CP [Cu2(bza)4(pyr)] (1) and the other a porous CP [Cu2(1-nap)4(pyr)] (2) (bza = benzoate, 1-nap = 1-naphthoate and pyr = pyrimidine), were subjected to ball-milling to assess the effect of mechanical force on their porosities. Ball mill treatments were found to induce an amorphization and cause a 30 fold enhancement of the CO2 adsorption amount at 195 K and P/P0 ∼ 1 for 1 and a slightly decreased CO2 adsorption amount for 2. The results of thorough characterization studies suggest that the formation of extrinsic micropores in addition to extrinsic mesopores/macropores between particles takes place by ball milling.

11.
Dalton Trans ; 50(39): 13680-13685, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636379

RESUMO

A series of mononuclear CuII complexes, [CuII(4-FBA)2(py)2(H2O)] (1), [CuII(3-FBA)2(py)2(H2O)] (2), and [CuII(3,4-F2BA)2(py)2(H2O)] (3), where 4-FBA = 4-fluorobenzoate, 3-FBA = 3-fluorobenzoate, 3,4-F2BA = 3,4-difluorobenzoate, and py = pyridine, respectively, was synthesized and the complexes crystallographically identified. All the CuII complex crystals share a one-dimensional O-H⋯O hydrogen-bonding chain substructure, although the mutual alignment of fluorinated benzoate (FxBA) ligands exhibits subtle differences among the various compounds, i.e., FxBA ligands align in an antiparallel fashion in crystals 1 and 3, while 3-FBA ligands in crystal 2 are interdigitated with a tilt along the a axis. Reversible phase transitions were found upon heating at 170.7, 171.3, and 267.5 K for crystals 1, 2, and 3, respectively; all crystals showed approximately 3% expansion and shrinkage of the intermolecular O-H⋯O hydrogen bond distances associated with the thermally activated orientational fluctuations of the FxBA ligands in crystals 1 and 3. The increase in dielectric constant with increasing temperature, at 240 K, activated molecular fluctuation in the 3,4-F2BA ligands in crystal 3. Heat capacity measurements indicated that both the expansion and shrinkage of hydrogen bonds, and the molecular fluctuation in 3,4-F2BA ligands, contributed to phase transition, and the latter caused dipole fluctuation, resulting in a dielectric anomaly in crystal 3.

12.
Inorg Chem ; 60(7): 4531-4538, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705119

RESUMO

Flexible porous coordination polymers (PCPs)/metal-organic frameworks are unique materials that have potential applications as components of highly efficient separation, sensor, and actuator systems. In general, the structures of flexible PCPs drastically change upon guest loading. In this investigation, we uncovered the rare one-dimensional PCP [Cu2(bza)4(2-apyr)] (1; bza = benzoate and 2-apyr = 2-aminopyrimidine), which exhibits a unique type of flexibility involving temporary pore opening. Single-crystal X-ray diffraction analysis revealed that desolvated 1 and ethyl acetate (AcOEt)-loaded (1·AcOEt) and CO2-loaded (1·CO2) 1 have isolated pores. In the case of 1, the pore structure prevents guest penetration. In addition, the isolated pore structures of 1·AcOEt and 1·CO2 block guest release. However, 1 participates in reversible adsorption/desorption of AcOEt and CO2 because pore opening occurs temporarily. The CO2 adsorption/desorption isotherms of 1 are type I and dissimilar to those observed in traditional flexible PCPs with adsorption/desorption hysteresis. The lesser conventional flexibility displayed by 1 could offer new insight into the design of flexible PCPs.

13.
Chem Commun (Camb) ; 57(18): 2249-2252, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33616138

RESUMO

[{ReI(CO)3(Hbim)}3(tpta)]2 (1, Hbim- = 2,2'-biimidazolate monoanion, tpta = 2,4,6-tripyridyl-1,3,5-triazine) was prepared as a nano-space supramolecule by using a new group of H-bonded coordination capsules. The hamburger bun-shaped half unit [{ReI(CO)3(Hbim)}3(tpta)] contains six intermolecular H-bonds of Hbim- ligands with complementary dual NHN types, and three [ReI(CO)3(Hbim)] are coordinated by bridging tridentate tpta. Interestingly, mechanical grinding easily would convert single crystals of 1 to an amorphous state with minor crystallinity while maintaining the nano-space pores. The ground sample can reversibly uptake and release small molecules such as CO2 and (CH2Cl)2.

14.
Chem Commun (Camb) ; 57(9): 1157-1160, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33411863

RESUMO

Redox-active hexakis(4-carboxyphenyl) tri(dithiolylidene)cyclohexanetrione (CPDC) was synthesized. The CPDC-based porous framework, constructed via anomalistic helical hydrogen-bonding, exhibites permanent porosity and photoconductivity.

15.
Chemistry ; 27(11): 3832-3841, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33305451

RESUMO

Diacetylene derivatives exhibit solid-state polymerization to polydiacetylene initiated by UV light or γ-ray irradiation. The activation of the photopolymerization relies on the monomer diynes arrangement. Recently, it has been demonstrated that the first mechanoresponsive bisamide substituted diacetylenes (DAs) show dramatic switching from light-inert to light-reactive states at a given pressure. The origin of this unique phenomenon was apparently related to the pressure-sensitive crystalline transition in DAs, but the molecular mechanism remains elusive. To obtain more insight, herein a series of DAs with varying terminal alkyl spacer length is presented, and their molecular structural effect on the intermolecular hydrogen bonding and steric repulsion is examined. In pristine states, even-parity DAs were inactive upon UV irradiation (λ=254 nm) unless external pressure was applied. By contrast, odd-parity DAs were easily polymerized upon UV irradiation without pressure application. However, the pressure-induced crystalline phase transition exhibiting photopolymerization was valid for all DAs regardless of their alkyl spacer length. A systematic investigation revealed that the terminal alkyl spacer length, especially its odd/even parity plays a key role in determining the intrinsic intermolecular hydrogen-bonding nature of DA crystals and the resultant molecular packing. In addition, the relevant thermochromic behavior was also observed from photopolymerized polydiacetylenes.

16.
Dalton Trans ; 49(46): 16772-16777, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33169766

RESUMO

Crystals of (HDABCO+)9(DABCO)[Ni(dmit)2]9·6CH3CN were shown to have a space group of R3[combining macron], a hexapetal flower-like channel of [Ni(dmit)2] anions, and a one-dimensional hydrogen bonding chain composed of protonated DABCO and CH3CN molecules. The crystals display antiferromagnetic and ferromagnetic interactions within and between hexamers, respectively, whereas the flexible DABCO-CH3CN array shows dielectric relaxation.

17.
Angew Chem Int Ed Engl ; 59(50): 22446-22450, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32856378

RESUMO

The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal-oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high-density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3 )2 (n-BuPO3 )4 MoV 4 MoVI 14 O49 ]5- (Molecule 1) at approximately 2 nm by using single-crystal X-ray diffraction analysis. The Na+ encapsulated in the discrete metal-oxide anion exhibited a reversible order-disorder transition with distortion of the Mo-O molecular framework induced by temperature. Similar order-disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single-crystal state or by substituting the countercation to change the molecular packing.

18.
Inorg Chem ; 59(8): 5418-5423, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32227870

RESUMO

Two crystal polymorphs of Ni(cyclam)I2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) were synthesized, and their magnetic properties were investigated. Temperature-dependent X-ray structural analysis and magnetic measurements revealed gradual spin transition in molecular-crystal polymorph trans-[Ni(cyclam)I2] (1a), whereas the zigzag-chain polymorph catena-[Ni(cyclam)(µ-I)]I (1b) did not show an obvious spin transition. The entropy difference between high- and low-spin states of 1a estimated by assuming the spin-equilibrium model is much smaller than those in typical iron(II)-based spin-crossover (SCO) complexes, suggesting that the normal mode softening is less remarkable in 1a. In this system, it is clearly evidenced that the interaction mode responsible to the spin equilibrium in octahedral nickel(II) complexes is highly anistropic, i.e., z-elongation and x,y-shortening of the coordination octahedron.

19.
Chem Asian J ; 15(4): 478-482, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31889429

RESUMO

Introduction of functional groups that can form intermolecular hydrogen bonds into highly-emissive luminophores is a promising way to induce mechanochromic luminescence. Herein, we report that a 9,10-bis(phenylethynyl)anthracene derivative featuring two amide groups forms green-emissive crystals based on two-dimensional hydrogen-bonded molecular sheets. Mechanical grinding changed the emission from green to yellow, owing to a transition from a crystalline to an amorphous phase. Infrared spectroscopy revealed that mechanical stimuli disrupted the linear hydrogen-bonding formation. A thermal treatment recovered the original green photoluminescence.

20.
Commun Chem ; 3(1): 143, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36703407

RESUMO

The selective carbon dioxide (CO2) absorption properties of ionic liquids (ILs) are highly pertinent to the development of methods to capture CO2. Although it has been reported that fluorinated components give ILs enhanced CO2 solubilities, it has been challenging to gain a deep understanding of the interactions occurring between ILs and CO2. In this investigation, we have utilized the soft crystalline material [Cu(NTf2)2(bpp)2] (NTf2‒ = bis(trifluoromethylsulfonyl)imide, bpp = 1,3-bis-(4-pyridyl)propane) as a surrogate for single-crystal X-ray diffraction analysis to visualize interactions occurring between CO2 and NTf2‒, the fluorinated IL component that is responsible for high CO2 solubility. Analysis of the structure of a CO2-loaded crystal reveals that CO2 interacts with both fluorine and oxygen atoms of NTf2‒ anions in a trans rather than cis conformation about the S-N bond. Theoretical analysis of the structure of the CO2-loaded crystal indicates that dispersion and electrostatic interactions exist between CO2 and the framework. The overall results provide important insight into understanding and improving the CO2 absorption properties of ILs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...