Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Nat Struct Mol Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773334

RESUMO

Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.

2.
Biomol NMR Assign ; 18(1): 71-78, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551798

RESUMO

The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Humanos , Calponinas , Proteínas dos Microfilamentos/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Soluções , Isótopos de Nitrogênio
3.
ACS Omega ; 8(40): 37186-37195, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841172

RESUMO

Various toxicity and pharmacokinetic evaluations as screening experiments are needed at the drug discovery stage. Currently, to reduce the use of animal experiments and developmental expenses, the development of high-performance predictive models based on quantitative structure-activity relationship analysis is desired. From these evaluation targets, we selected 50% lethal dose (LD50), blood-brain barrier penetration (BBBP), and the clearance (CL) pathway for this investigation and constructed predictive models for each target using 636-11,886 compounds. First, we constructed predictive models using the DeepSnap-deep learning (DL) method and images of compounds as features. The calculated area under the curve (AUC) and balanced accuracy (BAC) were, respectively, 0.887 and 0.818 for LD50, 0.893 and 0.824 for BBBP, and 0.883 and 0.763 for the CL pathway. Next, molecular descriptors (MDs) of compounds were calculated using Molecular Operating Environment, alvaDesc, and ADMET Predictor to construct predictive models using the MD-based method. Using these MDs, we constructed predictive models using DataRobot. The calculated AUC and BAC were, respectively, 0.931 and 0.805 for LD50, 0.919 and 0.849 for BBBP, and 0.900 and 0.807 for the CL pathway. In this investigation, we constructed predictive models combining the DeepSnap-DL and MD-based methods. In ensemble models using the mean predictive probability of the DeepSnap-DL and MD-based methods, the calculated AUC and BAC were, respectively, 0.942 and 0.842 for LD50, 0.936 and 0.853 for BBBP, and 0.908 and 0.832 for the CL pathway, with improved predictive performance observed for all variables compared with either single method alone. Moreover, in consensus models that adopted only compounds for which the results of the two methods agreed, the calculated BAC for LD50, BBBP, and the CL pathway were 0.916, 0.918, and 0.847, respectively, indicating higher predictive performance than the ensemble models for all three variables. The predictive models combining the DeepSnap-DL and MD-based methods displayed high predictive performance for LD50, BBBP, and the CL pathway. Therefore, the application of this approach to prediction targets in various drug discovery screenings is expected to accelerate drug discovery.

4.
ACS Appl Mater Interfaces ; 15(36): 42196-42208, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652433

RESUMO

Bioactuators made of cultured skeletal muscle cells are generally driven by electrical or visible light stimuli. Among these, the technology to control skeletal muscle consisting of myoblasts genetically engineered to express photoreceptor proteins with visible light is very promising, as there is no risk of cell contamination by electrodes, and the skeletal muscle bioactuator can be operated remotely. However, due to the low biopermeability of visible light, it can only be applied to thin skeletal muscle films, making it difficult to realize high-power bioactuators consisting of thick skeletal muscle. To solve this problem, it is desirable to realize thick skeletal muscle bioactuators that can be driven by near-infrared (NIR) light, to which living tissue is highly permeable. In this study, as a promising first step, upconversion nanoparticles (UCNPs) capable of converting NIR light into blue light were bound to C2C12 myoblasts expressing the photoreceptor protein channelrhodopsin-2 (ChR2), and the myoblasts calcium ion (Ca2+) influx was remotely manipulated by NIR light exposure. UCNP-bound myoblasts and UCNP-bound differentiated myotubes were exposed to NIR light, and the intracellular Ca2+ concentrations were measured and compared to myoblasts exposed to blue light. Exposure of the UCNP-bound cells to NIR light was found to be more efficient than exposure to blue light in terms of stimulating Ca2+ influx.


Assuntos
Cálcio , Nanopartículas , Optogenética , Fibras Musculares Esqueléticas , Raios Infravermelhos , Íons , Mioblastos
5.
R Soc Open Sci ; 10(6): 230247, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351492

RESUMO

A pure-phase Cu2O film photocatalyst was successfully prepared by the electrodeposition technique from a non-pH-adjusted solution. To investigate the phase evolution and photocatalytic activity of the film, the electrodeposition was conducted at different deposition temperatures. Photocatalytic activity of the films was evaluated from methylene blue (MB) dye degradation. The Cu2O phase initially appeared at room temperature and its fraction was found to increase with increasing the deposition temperature, while the impurity phase was successfully diminished. A pure Cu2O film with a narrow optical bandgap energy of 1.96 eV was obtained at 75°C. The multi-faceted crystals were found to form at 45°C and became a truncated octahedral structure that possessed {111} and {100} facets as deposition temperature further increased. A preferred orientation growth of {110} facet, which is known to possess a relatively high surface energy, was produced at 75°C. The performance of MB photodegradation enhanced gradually by increasing the deposition temperature. The increase of photocatalytic activity could be attributed to the rise of photoelectrochemical response and the decrease of resistance charge transfer because of narrowing bandgap energy, increasing Cu2O fraction, and growing a relatively high catalytic activity facet which had escalated redox reaction that decomposed MB at the photocatalyst-solution interface.

6.
PLoS One ; 18(2): e0279878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827247

RESUMO

BACKGROUND AND OBJECTIVES: The prognosis of idiopathic chronic fibrotic interstitial pneumonitis (CFIP) in patients with acute exacerbation (AE) is variable. We examined whether the imaging pattern on thoracic computed tomography (CT) or the severity of respiratory failure with AE-CFIP is associated with short-term prognosis. METHODS: Patients admitted to two university hospitals were retrospectively analyzed and divided into derivation and validation cohorts. The distribution of newly appearing parenchymal abnormalities on thoracic CT was classified into peripheral, multifocal, and diffuse patterns. Respiratory failure was defined as severe if a fraction of inspired oxygen ≥ 0.5 was required to maintain percutaneous oxygen saturation ≥ 90% on admission. Factors associated with 90 day-mortality were analyzed using univariate and Cox proportional hazard regression. RESULTS: In 59 patients with AE-CFIP of the derivation cohort, diffuse pattern on CT was associated with higher mortality within 90 days (43%) than peripheral/multifocal pattern (17%, p = 0.03). Additionally, compared with non-severe failure, severe respiratory failure was associated with higher mortality (47% vs. 21%, p = 0.06). Cox proportional hazard regression analysis demonstrated that a combination of diffuse pattern on CT and severe respiratory failure was associated with the poorest prognosis (hazard ratio [HR] 3.51 [interquartile range 1.26-9.80], p = 0.016) in the derivation cohort, which was confirmed in the validation cohort (n = 31, HR 4.30 [interquartile range 1.51-12.2], p = 0.006). CONCLUSION: The combination of imaging pattern on thoracic CT and severity of respiratory failure was associated with the prognosis of idiopathic AE-CFIP.


Assuntos
Pneumonias Intersticiais Idiopáticas , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Insuficiência Respiratória , Humanos , Estudos Retrospectivos , Prognóstico , Tomografia Computadorizada por Raios X/métodos , Progressão da Doença
7.
Environ Res ; 217: 114488, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400227

RESUMO

The efficient removal of organic refractory pollutants such as dyes and antibiotics in wastewater is crucial for protecting the environment and human health. In this work, a NiCo-layered double hydroxide (NiCo-LDH) with a uniform microspherical, hierarchical structure and a high surface area was successfully synthesized as an effective peroxymonosulfate (PMS) activator for the degradation of various organic dyes and antibiotics. The influence of various parameters on the catalytic activity of the NiCo-LDH was determined. Radical scavenger studies unveiled the major reactive oxygen species (ROSs) generated in the NiCo-LDH/PSM system to be 1O2, SO4•-, and O2•-. Ex-situ X-ray photoelectron spectroscopy (XPS) analysis uncovered the role of Co sites and oxygen vacancy as active sites and revealed the reversible redox properties of NiCo-LDH based on Co2+/Co3+ cycles. The activation mechanism and Rhodamine B (RhB) degradation pathways were experimentally studied and proposed. The NiCo-LDH is highly versatile, reusable and stable as shown by post-catalysis characterizations. This work shows the excellent catalysis performances and provides insights into the activation mechanism of PMS by NiCo-LDH for organic pollutant remediation.


Assuntos
Hidróxidos , Peróxidos , Humanos , Peróxidos/química , Hidróxidos/química , Corantes
8.
Dig Endosc ; 35(3): 332-341, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36076318

RESUMO

OBJECTIVES: Endoscopy poses a high risk of severe acute respiratory syndrome coronavirus 2 infection for medical personnel due to the dispersal of aerosols from the patient. We investigated the location and size of droplets generated during esophagogastroduodenoscopy (EGD) and endoscopic submucosal dissection (ESD), the contamination of the surrounding area before and after the procedures, and the effectiveness of using an extraoral suction device (Free arm arteo; TOKYO GIKEN, Inc., Tokyo, Japan). METHODS: Patients who consented to the study and underwent EGD or ESD between December 8, 2020, and April 15, 2021, at the National Cancer Center East Hospital were included. Adenosine triphosphate (ATP) hygiene monitoring tests and a particle counter were used for measurements. RESULTS: Assessments were performed on 22 EGD and 15 ESD cases. ATP hygiene monitoring tests showed significant elevations at three sites near the patient, and two sites 1.5 m away, for EGD, and at four sites near the patient and 1.5 m away for ESD. In both ESD and EGD, extraoral suction devices reduced the extent of the contamination. Particles <5 µm in size were generated during endoscopic procedures and dispersed from both the forceps hole and the patient's mouth. The extraoral suction device did not reduce the number of particles generated. CONCLUSIONS: During endoscopic procedures, cleaning the surrounding environment is important in addition to standard precautions the endoscopist and caregivers take. The use of extraoral suction devices can also potentially reduce contamination of the surrounding environment.


Assuntos
COVID-19 , Ressecção Endoscópica de Mucosa , Humanos , Estudos Prospectivos , Sucção , COVID-19/prevenção & controle , Aerossóis e Gotículas Respiratórios , Endoscopia , Ressecção Endoscópica de Mucosa/métodos , Resultado do Tratamento
9.
J Hum Lact ; 39(2): 315-324, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35658699

RESUMO

BACKGROUND: Glutamic acid, an amino acid that exhibits umami taste, is utilized in Japanese food and is abundant in human milk. We examined the influence of maternal habitual eating behavior on glutamic acid concentration in human milk. RESEARCH AIM: To determine the association between maternal dietary behaviors at the end of pregnancy and the 1st month postpartum and glutamic acid concentration in colostrum and mature milk. METHOD: This was a prospective, correlational, one-group longitudinal study. Women aged 20-30 years during the third trimester of pregnancy (N = 30) consented to participate and completed the data collection. Dietary history questionnaires were used to measure food intake. Glutamic acid levels in whey from colostrum and mature milk and in plasma during late pregnancy and the first month postpartum were measured. Data were considered significant at p < .05. Basic statistics, correlation coefficients analysis, unpaired t test, and one-way analysis of variance were performed. RESULTS: Glutamic acid concentrations in human milk and plasma were found to be significantly associated with the consumption of several different foods. There was no association between glutamic acid concentrations in human milk and plasma or between glutamic acid concentrations in colostrum and mature milk. The glutamic acid content of mature milk differed by physical activity level (mild and moderate) during the first month postpartum (t [46] = 2.87, p < .01). CONCLUSION: There was no clear association between habitual dietary behavior and glutamic acid concentration in human milk. However, maternal factors other than diet may be important and require additional research.


Assuntos
Ácido Glutâmico , Leite Humano , Gravidez , Feminino , Humanos , Leite Humano/química , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Estudos Prospectivos , Estudos Longitudinais , Aleitamento Materno , Colostro/química , Dieta , Lactação/metabolismo
11.
Antibiotics (Basel) ; 11(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36139925

RESUMO

Evidence for the utility of pharmacist-driven antimicrobial stewardship programs remains limited. This study aimed to evaluate the usefulness of our institutional pharmacist-driven prospective audit with intervention and feedback (PAF) on the treatment of patients with bloodstream infections (BSIs). The effect of pharmacist-driven PAF was estimated using an interrupted time series analysis with a quasi-experimental design. The proportion of de-escalation during BSI treatment increased by 44% after the implementation of pharmacist-driven PAF (95% CI: 30−58, p < 0.01). The number of days of therapy decreased by 16 per 100 patient days for carbapenem (95% CI: −28 to −3.5, p = 0.012) and by 15 per 100 patient days for tazobactam/piperacillin (95% CI: −26 to −4.9, p < 0.01). Moreover, the proportion of inappropriate treatment in empirical and definitive therapy was significantly reduced after the implementation of pharmacist-driven PAF. Although 30-day mortality did not change, compliance with evidenced-based bundles in the BSI of Staphylococcus aureus significantly increased (p < 0.01). In conclusion, our pharmacist-driven PAF increased the proportion of de-escalation and decreased the use of broad-spectrum antibiotics, as well as the proportion of inappropriate treatment in patients with BSI. This indicates that pharmacist-driven PAF is useful in improving the quality of antimicrobial treatment and reducing broad-spectrum antimicrobial use in the management of patients with BSI.

12.
Bio Protoc ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35937929

RESUMO

Lysosome isolation is a preresiquite for identifying lysosomal protein composition by mass spectroscopic analysis, to reveal lysosome functions, and their involvement in some diseases. Magnetic nanoparticle-based fractionation has received great attention for lysosome isolation, owing to its high efficiency, purity, and preservation of lysosomal structures. Understanding the intracellular trafficking of magnetic probes is the key point of this technique, to determine the appropriate time for magnetic isolation of lysosomes, because this parameter changes depending on different cell lines used. The traditional magnetic probes, such as superparamagnetic iron oxide nanoparticles (SPIONs), require surface modification by fluorescent dyes to enable the investigation of their intracellular trafficking, which has some disadvantages, including the possible alternation of their bio-interaction, and the instability of fluorescence properties in the lysosomal environment. To overcome those limitations, we present a protocol that employs magnetic-plasmonic nanoparticles (MPNPs) to investigate intracellular trafficking using their intrinsic imaging capability, followed by quick lysosome isolation using a magnetic column. This protocol can be easily applied to isolate the intact lysosomes of any adherent cell lines. Graphical abstract.

13.
Biomol NMR Assign ; 16(2): 297-303, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35666428

RESUMO

Ribosome biogenesis is a complicated, multistage process coordinated by ribosome assembly factors. Ribosome binding factor A (RbfA) is a bacterial one, which possesses a single structural type-II KH domain. By this domain, RbfA binds to a 16S rRNA precursor in small ribosomal subunits to promote its 5'-end processing. The human RbfA homolog, mtRbfA, binds to 12S rRNAs in the mitoribosomal small subunits and promotes its critical maturation process, the dimethylation of two highly conserved consecutive adenines, which differs from that of RbfA. However, the structural basis of the mtRbfA-mediated maturation process is poorly understood. Herein, we report the 1H, 15N, and 13C resonance assignments of the KH domain of mtRbfA and its solution structure. The mtRbfA domain adopts essentially the same α1-ß1-ß2-α2(kinked)-ß3 topology as the type-II KH domain. Comparison with the RbfA counterpart showed structural differences in specific regions that function as a putative RNA-binding site. Particularly, the α2 helix of mtRbfA forms a single helix with a moderate kink at the Ser-Ala-Ala sequence, whereas the corresponding α2 helix of RbfA is interrupted by a distinct kink at the Ala-x-Gly sequence, characteristic of bacterial RbfA proteins, to adopt an α2-kink-α3 conformation. Additionally, the region linking α1 and ß1 differs considerably in the sequence and structure between RbfA and mtRbfA. These findings suggest some variations of the RNA-binding mode between them and provide a structural basis for mtRbfA function in mitoribosome biogenesis.


Assuntos
Proteínas de Escherichia coli , Proteínas Mitocondriais/química , Ribossomos Mitocondriais , Proteínas de Ligação a RNA/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Humanos , Ribossomos Mitocondriais/metabolismo , Ressonância Magnética Nuclear Biomolecular , Precursores de RNA/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Vitamina B 12/análogos & derivados
14.
Elife ; 112022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674491

RESUMO

Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification have been reported. Moreover, the biological role of histidine methylation has remained poorly understood to date. Here, we report that human METTL18 is a histidine methyltransferase for the ribosomal protein RPL3 and that the modification specifically slows ribosome traversal on Tyr codons, allowing the proper folding of synthesized proteins. By performing an in vitro methylation assay with a methyl donor analog and quantitative mass spectrometry, we found that His245 of RPL3 is methylated at the τ-N position by METTL18. Structural comparison of the modified and unmodified ribosomes showed stoichiometric modification and suggested a role in translation reactions. Indeed, genome-wide ribosome profiling and an in vitro translation assay revealed that translation elongation at Tyr codons was suppressed by RPL3 methylation. Because the slower elongation provides enough time for nascent protein folding, RPL3 methylation protects cells from the cellular aggregation of Tyr-rich proteins. Our results reveal histidine methylation as an example of a ribosome modification that ensures proteome integrity in cells.


Assuntos
Histidina , Metiltransferases , Proteostase , Proteína Ribossômica L3 , Histidina/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Biossíntese de Proteínas , Proteína Ribossômica L3/metabolismo
15.
J Pharm Health Care Sci ; 8(1): 11, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369889

RESUMO

BACKGROUND: Postoperative nausea and vomiting (PONV) delays postoperative recovery, prolongs hospital stays, and hinders patients' return to society, thus making it a major cause of increased healthcare costs. It is also the most troubling postoperative complication in female patients undergoing surgery. However, in Japan, guidelines for the management of PONV have not been established, and the management protocol for PONV is left to each institution and anesthesiologist. Therefore, we developed criteria for intraoperative management of PONV. METHODS: In female surgical patients, the usefulness of the criteria was evaluated by comparing the implementation rate of intraoperative management and PONV incidence before and after the establishment of the criteria. An Apfel simplified score (Apfel score) ≥2 was set as an indication for intraoperative management of PONV. RESULTS: The implementation rate of intraoperative management increased from 91.2 to 96.0% after the introduction of the criteria. In patients with an Apfel score of 2, the intraoperative management implementation rate significantly increased from 81.1 to 94.7% (p = 0.016), while PONV incidence significantly decreased from 44.6 to 34.1% after the introduction of the criteria (p = 0.040). CONCLUSIONS: The criteria for intraoperative management of PONV increased the implementation rate of intraoperative management and decreased PONV incidence, indicating the usefulness of the criteria.

16.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208096

RESUMO

The oxidation of solution-synthesized iron (Fe) and iron carbide (Fe2C) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FexOy) shell for the Fe nanoparticles and ~2 nm for the Fe2C nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the Fe2C. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FexOy shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the Fe2C progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the Fe2C nanoparticles.

17.
ACS Nano ; 16(1): 885-896, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978188

RESUMO

Rapid and efficient isolation of intact lysosomes is necessary to study their functions and metabolites by proteomic analysis. We developed a swift and robust nanoparticle-based magnetic separation method in which magnetic-plasmonic hybrid nanoparticles (MPNPs) conjugated with amino dextran (aDxt) were targeted to the lumen of lysosomes via the endocytosis pathway. For well-directed magnetic separation of the lysosomes, it is important to trace the intracellular trafficking of the aDxt-conjugated MPNPs (aDxt-MPNPs) in the endocytosis pathway. Therefore, we analyzed the intracellular transport process of the aDxt-MPNPs by investigating the time-dependent colocalization of plasmonic scattering of aDxt-MPNPs and immunostained marker proteins of organelles using the threshold Manders' colocalization coefficient (Rt). Detailed analysis of time variations of Rt for early and late endosomes and lysosomes allowed us to derive the transport kinetics of aDxt-MPNPs in a cell. After confirming the incubation time required for sufficient accumulation of aDxt-MPNPs in lysosomes, the lysosomes were magnetically isolated as intact as possible. By varying the elapsed time from homogenization to complete isolation of lysosomes (tdelay) and temperature (T), the influences of tdelay and T on the protein composition of the lysosomes were investigated by polyacrylamide gel electrophoresis and amino acid analysis. We found that the intactness of lysosomes could become impaired quite quickly, and to isolate lysosomes as intact as possible with high purity, tdelay = 30 min and T = 4 °C were optimal settings.


Assuntos
Endocitose , Nanopartículas , Proteômica , Lisossomos/metabolismo , Endossomos/química , Fenômenos Magnéticos
18.
Biomol NMR Assign ; 16(1): 41-49, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783967

RESUMO

Matrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding and two consecutive RNA recognition motif (RRM) domains for RNA binding. Matrin-3 has been reported to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) when its disordered region contains pathogenic mutations. Simultaneously, it has been shown that the RNA-binding activity of Matrin-3 mediated by its RRM domains, affects the formation of insoluble cytoplasmic granules, which are related to the pathogenic mechanism of ALS/FTD. Thus, the effect of the RRM domains on the phase separation of condensed protein/RNA mixtures has to be clarified for a comprehensive understanding of ALS/FTD. Here, we report the 1H, 15N, and 13C resonance assignments of the two RNA binding domains and their solution structures. The resonance assignments and the solution structures obtained in this work will contribute to the elucidation of the molecular basis of Matrin-3 in the pathogenic mechanism of ALS and/or FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Ressonância Magnética Nuclear Biomolecular , RNA/metabolismo , Motivo de Reconhecimento de RNA
19.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947718

RESUMO

Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of 'hot-injection' processes was avoided, focusing on 'non-injection' ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2-xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained.

20.
Nat Commun ; 12(1): 7102, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876589

RESUMO

Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.


Assuntos
Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Doenças dos Animais , Animais , Linhagem Celular , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Feminino , Humanos , Modelos Moleculares , Neurônios , Phlebovirus , Fosforilação , Ligação Proteica , Ratos , Ratos Wistar , Ribossomos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...