Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 18: 1389067, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741760

RESUMO

Introduction: While the fovea on the retina covers only a small region of the visual field, a significant portion of the visual cortex is dedicated to processing information from the fovea being a critical center for object recognition, motion control, and visually guided attention. Despite its importance, prior functional imaging studies in awake monkeys often focused on the parafoveal visual field, potentially leading to inaccuracies in understanding the brain structure underlying function. Methods: In this study, our aim is to unveil the neuronal connectivity and topography in the foveal visual cortex in comparison to the parafoveal visual cortex. Using four different types of retrograde tracers, we selectively injected them into the striate cortex (V1) or V4, encompassing the regions between the fovea and parafovea. Results: V1 and V4 exhibited intense mutual connectivity in the foveal visual field, in contrast to the parafoveal visual field, possibly due to the absence of V3 in the foveal visual field. While previous live brain imaging studies failed to reveal retinotopy in the foveal visual fields, our results indicate that the foveal visual fields have continuous topographic connectivity across V1 through V4, as well as the parafoveal visual fields. Although a simple extension of the retinotopic isoeccentricity maps from V1 to V4 has been suggested from previous fMRI studies, our study demonstrated that V3 and V4 possess gradually smaller topographic maps compared to V1 and V2. Feedback projections to foveal V1 primarily originate from the infragranular layers of foveal V2 and V4, while feedforward projections to foveal V4 arise from both supragranular and infragranular layers of foveal V1 and V2, consistent with previous findings in the parafoveal visual fields. Discussion: This study provides valuable insights into the connectivity of the foveal visual cortex, which was ambiguous in previous imaging studies.

2.
Cereb Cortex ; 33(16): 9599-9615, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415460

RESUMO

We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.


Assuntos
Corpos Geniculados , Córtex Visual , Ratos , Animais , Corpos Geniculados/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Campos Visuais , Ratos Wistar
3.
Cereb Cortex ; 33(16): 9450-9464, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415464

RESUMO

Despite previous agreement of the absence of cortical column structure in the rodent visual cortex, we have recently revealed a presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of adult Long-Evans rats. In this study, we deepened understanding of characteristics of rat ODCs. We found that this structure was conserved in Brown Norway rats, but not in albino rats; therefore, it could be a structure generally present in pigmented wild rats. Activity-dependent gene expression indicated that maturation of eye-dominant patches takes more than 2 weeks after eye-opening, and this process is visual experience dependent. Monocular deprivation during classical critical period strongly influenced size of ODCs, shifting ocular dominance from the deprived eye to the opened eye. On the other hand, transneuronal anterograde tracer showed a presence of eye-dominant patchy innervation from the ipsilateral V1 even before eye-opening, suggesting the presence of visual activity-independent genetic components of developing ODCs. Pigmented C57BL/6J mice also showed minor clusters of ocular dominance neurons. These results provide insights into how visual experience-dependent and experience-independent components both contribute to develop cortical columns during early postnatal stages, and indicate that rats and mice can be excellent models to study them.


Assuntos
Dominância Ocular , Córtex Visual , Animais , Ratos , Camundongos , Ratos Long-Evans , Camundongos Endogâmicos C57BL , Córtex Visual/fisiologia , Neurônios/fisiologia
4.
J Comp Neurol ; 531(6): 681-700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740976

RESUMO

The pulvinar in the macaque monkey contains three divisions: the medial pulvinar (PM), the lateral pulvinar (PL), and the inferior pulvinar (PI). Anatomical studies have shown that connections of PM are preferentially distributed to higher association areas, those of PL are biased toward the ventral visual pathway, and those of PI are biased with the dorsal visual pathway. To study functional connections of the pulvinar at mesoscale, we used a novel method called INS-fMRI (infrared neural stimulation and functional magnetic resonance imaging). This method permits studies and comparisons of multiple pulvinar networks within single animals. As previously revealed, stimulations of different sites in PL and PI produced topographically organized focal activations in visual areas V1, V2, and V3. In contrast, PM stimulation elicited little or diffuse response. The relative activations of areas V1, V2, V3A, V3d, V3v, V4, MT, and MST revealed that connections of PL are biased to ventral pathway areas, and those of PI are biased to dorsal areas. Different statistical values of activated blood-oxygen-level-dependent responses produced the same center of activation, indicating stability of connectivity; it also suggests possible dynamics of broad to focal responses from single stimulation sites. These results demonstrate that infrared neural stimulation-induced connectivity is largely consistent with previous anatomical connectivity studies, thereby demonstrating validity of our novel method. In addition, it suggests additional interpretations of functional connectivity to complement anatomical studies.


Assuntos
Pulvinar , Córtex Visual , Animais , Macaca , Pulvinar/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
5.
Vis Neurosci ; 39: E007, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321413

RESUMO

Studies in the greater galago have not provided a comprehensive description of the organization of eye-specific retino-geniculate-cortical projections to the recipient layers in V1. Here we demonstrate the overall patterns of ocular dominance domains in layers III, IV, and VI revealed following a monocular injection of the transneuronal tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). We also correlate these patterns with the array of cytochrome oxidase (CO) blobs in tangential sections through the unfolded and flattened cortex. In layer IV, we observed for the first time that eye-specific domains form an interconnected pattern of bands 200-250 µm wide arranged such that they do not show orientation bias and do not meet the V1 border at right angles, as is the case in macaques. We also observed distinct WGA-HRP labeled patches in layers III and VI. The patches in layer III, likely corresponding to patches of K lateral geniculate nucleus (LGN) input, align with layer IV ocular dominance columns (ODCs) of the same eye dominance and overlap partially with virtually all CO blobs in both hemispheres, implying that CO blobs receive K LGN input from both eyes. We further found that CO blobs straddle the border between layer IV ODCs, such that the distribution of CO staining is approximately equal over ipsilateral and contralateral ODCs. These results, together with studies showing that a high percentage of cells in CO blobs are monocular, suggest that CO blobs consist of ipsilateral and contralateral subregions that are in register with underlying layer IV ODCs of the same eye dominance. In macaques and humans, CO blobs are centered on ODCs in layer IV. Our finding that CO blobs in galago straddle the border of neighboring layer IV ODCs suggests that this novel feature may represent an alternative way by which visual information is processed by eye-specific modular architecture in mammalian V1.


Assuntos
Galagidae , Córtex Visual , Animais , Humanos , Complexo IV da Cadeia de Transporte de Elétrons , Córtex Visual/fisiologia , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre , Córtex Visual Primário , Corpos Geniculados/fisiologia , Galago , Macaca , Mamíferos
6.
Front Neurosci ; 16: 891247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794953

RESUMO

In primate vision, the encoding of color perception arises from three types of retinal cone cells (L, M, and S cones). The inputs from these cones are linearly integrated into two cone-opponent channels (cardinal axes) before the lateral geniculate nucleus. In subsequent visual cortical stages, color-preferring neurons cluster into functional domains within "blobs" in V1, "thin/color stripes" in V2, and "color bands" in V4. Here, we hypothesize that, with increasing cortical hierarchy, the functional organization of hue representation becomes more balanced and less dependent on cone opponency. To address this question, we used intrinsic signal optical imaging in macaque V1, V2, and V4 cortices to examine the domain-based representation of specific hues (here referred to as "hue domains") in cone-opponent color space (4 cardinal and 4 intermediate hues). Interestingly, we found that in V1, the relative size of S-cone hue preference domain was significantly smaller than that for other hues. This notable difference was less prominent in V2, and, in V4 was virtually absent, resulting in a more balanced representation of hues. In V2, hue clusters contained sequences of shifting preference, while in V4 the organization of hue clusters was more complex. Pattern classification analysis of these hue maps showed that accuracy of hue classification improved from V1 to V2 to V4. These results suggest that hue representation by domains in the early cortical hierarchy reflects a transformation away from cone-opponency and toward a full-coverage representation of hue.

7.
Neuroreport ; 33(12): 543-547, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35882010

RESUMO

Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception. To link anatomical abnormality and perceptual visual impairment of albinism, we compared the perceptual vision between the pigmented Long-Evans and the albino Wistar rats. We used the slow angled-descent forepaw grasping (SLAG) test. We hanged the rats in the air by their tails and slowly moved them around a safety bar so that they could see it. When the rats recognized the bar and try to grab it to escape, we counted the trial as 'positive', and we measured positive rates. We also measured the distance between the bar and their whiskers during the rats' initial grasping action, and evaluated type of action at the first contact to the bar. The positive-action rate in the Long-Evans rat group showed significantly higher than the Wistar rat group (0.85 ± 0.047, n = 10, vs. 0.29 ± 0.043, n = 10; P < 0.0001). Besides, when the action was positive, the distance between the bar and their whiskers was longer in the Long-Evans rat group than that in the Wistar rat group (117 ± 5.3 mm vs. 58.8 ± 4.6 mm; P < 0.0001). The Long-Evans rats grasped the bar more precisely than the Wistar rats. The pigmented Long-Evans rats have much better visual perception than the albino Wistar rats.


Assuntos
Albinismo , Ratos , Animais , Ratos Long-Evans , Ratos Wistar , Percepção Visual , Transtornos da Visão
8.
Front Neuroanat ; 15: 751810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720891

RESUMO

Because at least some squirrel monkeys lack ocular dominance columns (ODCs) in the striate cortex (V1) that are detectable by cytochrome oxidase (CO) histochemistry, the functional importance of ODCs on stereoscopic 3-D vision has been questioned. However, conventional CO histochemistry or trans-synaptic tracer study has limited capacity to reveal cortical functional architecture, whereas the expression of immediate-early genes (IEGs), c-FOS and ZIF268, is more directly responsive to neuronal activity of cortical neurons to demonstrate ocular dominance (OD)-related domains in V1 following monocular inactivation. Thus, we wondered whether IEG expression would reveal ODCs in the squirrel monkey V1. In this study, we first examined CO histochemistry in V1 of five squirrel monkeys that were subjected to monocular enucleation or tetrodotoxin (TTX) treatment to address whether there is substantial cross-individual variation as reported previously. Then, we examined the IEG expression of the same V1 tissue to address whether OD-related domains are revealed. As a result, staining patterns of CO histochemistry were relatively homogeneous throughout layer 4 of V1. IEG expression was also moderate and homogeneous throughout layer 4 of V1 in all cases. On the other hand, the IEG expression was patchy in accordance with CO blobs outside layer 4, particularly in infragranular layers, although they may not directly represent OD clusters. Squirrel monkeys remain an exceptional species among anthropoid primates with regard to OD organization, and thus are potentially good subjects to study the development and function of ODCs.

9.
Front Neuroanat ; 15: 629473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679337

RESUMO

Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bß (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.

10.
Cereb Cortex ; 31(8): 3788-3803, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33772553

RESUMO

The lateral and central lateral inferior pulvinar (PL/PIcl) of primates has been implicated in playing an important role in visual processing, but its physiological and anatomical characteristics remain to be elucidated. It has been suggested that there are two complete visuotopic maps in the PL/PIcl, each of which sends afferents into V2 and V4 in primates. Given that functionally distinct thin and thick stripes of V2 both receive inputs from the PL/PIcl, this raises the possibility of a presence of parallel segregated pathways within the PL/PIcl. To address this question, we selectively injected three types of retrograde tracers (CTB-488, CTB-555, and BDA) into thin or thick stripes in V2 and examined labeling in the PL/PIcl in macaques. As a result, we found that every cluster of retrograde labeling in the PL/PIcl included all three types of signals next to each other, suggesting that thin stripe- and thick stripe-projecting compartments are not segregated into domains. Unexpectedly, we found at least five topographically organized retrograde labeling clusters in the PL/PIcl, indicating the presence of more than two V2-projecting maps. Our results suggest that the PL/PIcl exhibits greater compartmentalization than previously thought. They may be functionally similar but participate in multiple cortico-pulvinar-cortical loops.


Assuntos
Pulvinar/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Imuno-Histoquímica , Macaca mulatta , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Neuroimagem , Pulvinar/anatomia & histologia , Tálamo/fisiologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
11.
J Comp Neurol ; 526(18): 2955-2972, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004587

RESUMO

Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.


Assuntos
Corpos Geniculados/patologia , Corpos Geniculados/fisiopatologia , Privação Sensorial/fisiologia , Córtex Visual/patologia , Córtex Visual/fisiopatologia , Animais , Macaca , Plasticidade Neuronal/fisiologia , Vias Visuais/patologia , Vias Visuais/fisiopatologia
12.
J Comp Neurol ; 525(1): 151-165, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27276555

RESUMO

Tree shrews possess an unusual segregation of ocular inputs to sublayers rather than columns in the primary visual cortex (V1). In this study, the lateral geniculate nucleus (LGN), superior colliculus (SC), pulvinar, and V1 were examined for changes in c-FOS, an immediate-early gene, expression after 1 or 24 hours of monocular inactivation with tetrodotoxin (TTX) in tree shrews. Monocular inactivation greatly reduced gene expression in LGN layers related to the blocked eye, whereas normally high to moderate levels were maintained in the layers that receive inputs from the intact eye. The SC and caudal pulvinar contralateral to the blocked eye had greatly (SC) or moderately (pulvinar) reduced gene expressions reflective of dependence on the contralateral eye. c-FOS expression in V1 was greatly reduced contralateral to the blocked eye, with most of the expression that remained in upper layer 4a and lower 4b and lower layer 6 regions. In contrast, much of V1 contralateral to the active eye showed normal levels of c-FOS expression, including the inner parts of sublayers 4a and 4b and layers 2, 3, and 6. In some cases, upper layer 4a and lower 4b showed a reduction of gene expression. Layers 5 and sublayer 3c had normally low levels of gene expression. The results reveal the functional dominance of the contralateral eye in activating the SC, pulvinar, and V1, and the results from V1 suggest that the sublaminar organization of layer 4 is more complex than previously realized. J. Comp. Neurol. 525:151-165, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Privação Sensorial/fisiologia , Animais , Lateralidade Funcional/fisiologia , Expressão Gênica , Hibridização In Situ , Modelos Animais , Plasticidade Neuronal , Tetrodotoxina , Tupaiidae , Vias Visuais/metabolismo
14.
Brain Struct Funct ; 221(5): 2619-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26159773

RESUMO

Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.


Assuntos
Córtex Auditivo/metabolismo , Corpos Geniculados/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Córtex Auditivo/crescimento & desenvolvimento , Feminino , Corpos Geniculados/crescimento & desenvolvimento , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
15.
Proc Natl Acad Sci U S A ; 111(11): 4297-302, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591618

RESUMO

Ocular dominance columns (ODCs) have been well studied in the striate cortex (V1) of macaques, as well defined arrays of columnar structure that receive inputs from one eye or the other, whereas ODC expression seems more obscure in some New World primate species. ODCs have been identified by means of eye injections of transneuronal transporters and examination of cytochrome oxidase (CO) activity patterns after monocular enucleation. More recently, live-imaging techniques have been used to reveal ODCs. Here, we used the expression of immediate-early genes (IEGs), protooncogene, c-Fos, and zinc finger protein, Zif268, after monocular inactivation (MI) to identify ODCs in V1 of New World owl monkeys. Because IEG expression is more sensitive to activity changes than CO expression, it is capable of revealing activity maps in all layers throughout V1 and demonstrating brief activity changes within a couple of hours. Using IEGs, we not only revealed apparent ODCs in owl monkeys but also discovered a number of unique features of their ODCs. Distinct from those in macaques, these ODCs sometimes bridged to other columns in layer 4 (Brodmann layer 4C). CO blobs straddled ODC borders in the central visual field, whereas they centered ODC patches in the peripheral visual field. In one case, the ODC pattern continued into V2. Finally, an elevation of IEG expression in layer 4 (4C) was observed along ODC borders after only brief MI. Our data provide insights into the structure and variability of ODCs in primates and revive debate over the functions and development of ODCs.


Assuntos
Aotidae/genética , Aotidae/fisiologia , Dominância Ocular/fisiologia , Proteínas Imediatamente Precoces/genética , Córtex Visual/metabolismo , Animais , Aotidae/metabolismo , Digoxigenina , Processamento de Imagem Assistida por Computador , Proteínas Imediatamente Precoces/metabolismo , Hibridização In Situ , Microscopia
16.
Cereb Cortex ; 22(10): 2313-21, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22065864

RESUMO

A group of 5 genes, OCC1, testican-1, testican-2, 5-HT1B, and 5-HT2A, are selectively expressed in layer 4 (4C of Brodmann) of striate cortex (visual area V1) of both Old World macaques and New World marmoset monkeys. The expression of these genes is activity dependent, as expression is reduced after blocking retinal activity. Surprisingly, the pronounced expression pattern has not been found in rodents or carnivores. Thus, these genes may be highly expressed in V1 of some but perhaps not all primates. Here, we compared the gene expression in members of 3 major branches of primate evolution: prosimians, New World monkeys, and Old World monkeys. Although the expression pattern of 5-HT1B was well conserved, those of the other genes varied from the least distinct in prosimian galagos to successively more in New World owl monkeys, marmosets, squirrel monkeys, and Old World macaque monkeys. In owl monkeys, the expression of 5-HT2A was significantly reduced by monocular tetrodotoxin injection, while those of OCC1 and 5-HT1B were not. Thus, we propose that early primates had low levels of expression and higher levels emerged with anthropoid primates and became further enhanced in the Old World catarrhine monkeys that are more closely related to humans.


Assuntos
Aotus trivirgatus/metabolismo , Callithrix/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Galago/metabolismo , Macaca mulatta/metabolismo , Receptores de Serotonina/metabolismo , Córtex Visual/metabolismo , Animais , Expressão Gênica/fisiologia , Especificidade da Espécie
17.
Hear Res ; 274(1-2): 129-41, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21111036

RESUMO

The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system.


Assuntos
Córtex Auditivo/fisiologia , Regulação da Expressão Gênica , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Aotus trivirgatus , Córtex Auditivo/anatomia & histologia , Mapeamento Encefálico/métodos , Núcleo Celular/metabolismo , Núcleo Coclear/anatomia & histologia , Corpos Geniculados/anatomia & histologia , Hibridização In Situ , Colículos Inferiores/anatomia & histologia , Núcleo Olivar/anatomia & histologia , Primatas , Distribuição Tecidual , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
18.
Eye Brain ; 2011(3): 5-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22984342

RESUMO

Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.

19.
J Chem Neuroanat ; 40(2): 112-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20457249

RESUMO

The extracellular matrix (ECM) plays important roles in the development and plasticity of the central nervous system, and it has been shown that it regulates reorganization of the neuronal network. We have found that expression of OCC1, testican-1, testican-2, testican-3, SPARC and SC1 mRNAs, which encode members of the OCC1-related family of ECM proteins, exhibits distinct activity-dependent expression patterns in the adult macaque visual cortex. This finding suggests that OCC1-related proteins play crucial roles in the visual processing pathway. In the present study, we examined mRNA expression patterns of OCC1-related genes in the dorsal lateral geniculate nucleus (dLGN) of macaques. The mRNAs of testican-1 and testican-2 were strongly expressed in both excitatory projection neurons and GABAergic interneurons in the dLGN. Expression of testican-3 mRNA, which is predominantly observed in GABAergic interneurons in the cortex, was restricted to excitatory projection neurons in the dLGN. SPARC mRNA was strongly, and exclusively, expressed in glial cells in the dLGN. Interestingly, neuronal SC1 mRNA expression was abundantly observed in intercalated, koniocellular layers of the dLGN, while it was preferentially observed in blob regions of the primary visual area that receives color coding K-pathway projection from dLGN koniocellular layers, suggesting a pathway preference of expression. Finally, monocular inactivation experiments demonstrated that expression of testican-1, testican-2 and testican-3 mRNAs in the dLGN is dependent on sensory activity. Given their differential expression patterns and activity dependence, products of OCC1-related genes may modulate visual processing and plasticity at the level of the dLGN and the visual cortex.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Corpos Geniculados/metabolismo , Neurônios/metabolismo , Animais , Proteínas da Matriz Extracelular/genética , Proteínas Relacionadas à Folistatina/genética , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Macaca , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vias Visuais/metabolismo
20.
Proc Natl Acad Sci U S A ; 106(29): 12151-5, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19581597

RESUMO

Visual inputs from the 2 eyes in most primates activate alternating bands of cortex in layer 4C of primary visual cortex, thereby forming the well-studied ocular dominance columns (ODCs). In addition, the enzymatic reactivity of cytochrome oxidase (CO) reveals "blob" structures within the supragranular layers of ODCs. Here, we present evidence for compartments within ODCs that have not been clearly defined previously. These compartments are revealed by the activity-dependent mRNA expression of immediate-early genes (IEGs), zif268 and c-fos, after brief periods of monocular inactivation (MI). After a 1-3-h period of MI produced by an injection of tetrodotoxin, IEGs were expressed in a patchy pattern that included infragranular layers, as well as supragranular layers, where they corresponded to the CO blobs. In addition, the expressions of IEGs in layer 4C were especially high in narrow zones along boundaries of ODCs, referred to here as the "border strips" of the ODCs. After longer periods of MI (>5 h), the border strips were no longer apparent. When either eyelid was sutured, changes in IEG expression were not evident in layer 4C; however, the patchy pattern of the expression in the infragranular and supragranular layers remained. These changes of IEG expression after MI indicate that cortical circuits involving the CO blobs of the supragranular layers include aligned groups of neurons in the infragranular layers and that the border strip neurons of layer 4C are highly active for a 3-h period after MI.


Assuntos
Dominância Ocular/genética , Regulação da Expressão Gênica , Genes Precoces , Visão Monocular/genética , Animais , Pálpebras/metabolismo , Pálpebras/patologia , Hibridização In Situ , Macaca , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suturas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...