Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(26): 13158-65, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805628

RESUMO

The photocatalytic degradation processes of ethylene glycol (EG) during the UV or visible light irradiation of pure anatase and nitrogen (N)-doped TiO2 powders (TiO(2-x)N(x), x = 0, 0.002, 0.003, and 0.007) were investigated using time-resolved diffuse reflectance (TDR) and solid-state NMR spectroscopies. The TDR spectra and time traces observed for the charge carriers indicated that the scavenging of photogenerated holes (h+) by EG occurred during the 355-nm laser photolysis of the N-doped TiO2 powders, while no direct oxidation reaction of EG by h+ occurred during the 460-nm laser photolysis, although the charge carriers were sufficiently generated upon excitation. The solid-state magic-angle spinning (MAS) NMR measurements revealed that EG is preferentially chemisorbed on the surface of the N-doped TiO2 powders, in contrast to the pure TiO2, and degrades under visible light irradiation.

2.
Langmuir ; 22(3): 893-6, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16430244

RESUMO

The local structure of the TiO2 surface modified with electron-donating bidentate ligands, such as catechols, has been investigated by solid-state NMR spectroscopy. The adsorption and degradation processes of catechols at the TiO2 surface were observed. The photocatalytic degradation mechanism of catechols at the TiO2 surface was interpreted in terms of the interfacial charge recombination reaction with conduction band electrons.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Propriedades de Superfície , Titânio/química , Adsorção , Catálise , Sondas Moleculares , Fotoquímica
4.
Artigo em Inglês | MEDLINE | ID: mdl-15100476

RESUMO

Chiral recognition in the host-guest complexation systems of chiral crown ether hosts and amino ester guests was thoroughly examined using the electrospray ionization (ESI) mass spectrometry/enantiomer labeled (EL)-guest method. In this method, the mass spectra of a mixture of three components in a solution, a chiral host (H), an equal amount of an (S)-enantiomer guest labeled with deuterium atoms (G(S-dn)(+)) and an unlabeled (R)-enantiomer guest (G(R)+), were measured and the relative peak intensity value [I(H + G(R))(+) / I(H + G(S-dn))(+) = IRIS] of the host-guest complex ions, observed with an excess guest concentration, was taken to provide the chiral recognition ability of the host. In our earlier report (1996), we demonstrated that the apparent chiral recognition abilities using a mass spectrometer with a homemade ESI interface were depressed by about one tenth compared with the corresponding abilities obtained by fast-atom bombardment (FAB) MS. In the present study, the enantioselective complexation behaviors of various combinations of chiral crown hosts with chiral guests were further investigated in detail mainly using a modern commercial ESI/ion trap (IT) mass spectrometer. Consequently, it was found that the apparent IRIS values from the ESI-MS/EL-guest method changed significantly, depending upon the instrument used, and in particular, upon the ESI interfaces. Moreover, under the specific measuring conditions in ESI-IT-MS, the degrees of depression of the apparent chiral recognition abilities are roughly grouped into three classes, depending upon the number (or probably the type) of the hydrophobic substituents of the hosts. Representing the degrees by the slopes when plotting the apparent IRIS values in ESI-MS versus those in FAB-MS, the slopes for the three classes are (1) 1.0, (2) 0.7 and (3) 0.3; the higher the hydrophobicity of the hosts (and then, the host-guest complex ions), the lower the slope (the apparent enantioselectivity). Strengthening the degree of depression may be caused by an increase in the local concentration of the host close to the surface of the droplets produced during the electrospary ionization process. The chiral recognition ability (K(R )/ K(S)) in an equilibrated solution agrees quite well with the IRIS value in FAB-MS rather than that in ESI-MS.

5.
J Org Chem ; 67(14): 4795-807, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-12098291

RESUMO

New linear host (1) and cyclic hosts (2 and 3), which have galactopyranose skeletons as chiral origins and oxyethylenes skeletons as binding sites, were designed based on the structural features extracted from the fructo-oligosaccharide derivatives, having a large chiral discrimination ability, and were then synthesized. These hosts showed chiral discrimination toward chiral organic ammonium salts. For example, the chiral discrimination ability (the ratio of association constants: K(R)/K(S)) of host 1, which has the highest value among them, was K(R)/K(S) = 3 for Trp-O-(i)Pr(+) and K(R)/K(S) = 0.7 for 1-(1-naphthyl)ethylammonium (NEA(+)) at 298 K in CHCl(3). It was clarified that host 1 changed the conformation from a linear structure to the pseudo-ring structure by complexation with cations such as alkali metallic ions and chiral organic ammonium ions. The (1)H NMR induced shifts of host 1 by adding the NEA(+) guests showed that the host-guest complex structures are clearly different, depending upon the chirality of the guest; in the complex with (R)-NEA(+), the naphthyl group of the guest is located above the oxyethylene skeleton of the host and in the complex with (S)-NEA(+), and the naphthyl group is located between the edges of the pseudo-ring of the host. The clearly different structure of the complex of host 1 with NEA(+) may be caused by the dynamic molecular recognition, thus the induced-fitting mechanism.


Assuntos
Química Orgânica/métodos , Galactose/análogos & derivados , Galactose/síntese química , Oligossacarídeos/síntese química , Compostos de Amônio Quaternário/química , Sítios de Ligação , Ciclização , Galactose/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Estrutura Molecular , Oligossacarídeos/química , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA