Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4876, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858359

RESUMO

Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.


Assuntos
Proteínas de Bactérias , Histidina Quinase , Monoéster Fosfórico Hidrolases , Transdução de Sinais , Histidina Quinase/metabolismo , Histidina Quinase/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Escherichia coli/genética
2.
Methods Mol Biol ; 2760: 463-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468104

RESUMO

By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.


Assuntos
Bactérias , Luz Azul , Optogenética/métodos , Expressão Gênica , Luz
3.
Structure ; 31(9): 1100-1108.e4, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37392739

RESUMO

In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spectroscopic data also reveal that the armless systems maintain the ability to respond to light. However, there is no subsequent regulation of OPM activity without the arms. Thermal denaturation reveals that the arms stabilize the DrBphP structure. Our results underline the importance of the structurally flexible interconnecting hairpin extensions and describe their central role in the allosteric coupling of phytochromes.


Assuntos
Deinococcus , Fitocromo , Conformação Proteica , Fitocromo/química , Luz , Transdução de Sinais , Proteínas de Bactérias/química , Deinococcus/química
4.
BMC Anesthesiol ; 23(1): 38, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721097

RESUMO

PURPOSE: Various malignancies with peritoneal carcinomatosis are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). The hemodynamic instability resulting from fluid balance alterations during the procedure necessitates reliable hemodynamic monitoring. The aim of the study was to compare the accuracy, precision and trending ability of two less invasive hemodynamic monitors, bioreactance-based Starling SV and pulse power device LiDCOrapid with bolus thermodilution technique with pulmonary artery catheter in the setting of cytoreductive surgery with HIPEC. METHODS: Thirty-one patients scheduled for cytoreductive surgery were recruited. Twenty-three of them proceeded to HIPEC and were included to the study. Altogether 439 and 430 intraoperative bolus thermodilution injections were compared to simultaneous cardiac index readings obtained with Starling SV and LiDCOrapid, respectively. Bland-Altman method, four-quadrant plots and error grids were used to assess the agreement of the devices. RESULTS: Comparing Starling SV with bolus thermodilution, the bias was acceptable (0.13 l min- 1 m- 2, 95% CI 0.05 to 0.20), but the limits of agreement were wide (- 1.55 to 1.71 l min- 1 m- 2) and the percentage error was high (60.0%). Comparing LiDCOrapid with bolus thermodilution, the bias was acceptable (- 0.26 l min- 1 m- 2, 95% CI - 0.34 to - 0.18), but the limits of agreement were wide (- 1.99 to 1.39 l min- 1 m- 2) and the percentage error was high (57.1%). Trending ability was inadequate with both devices. CONCLUSION: Starling SV and LiDCOrapid were not interchangeable with bolus thermodilution technique limiting their usefulness in the setting of cytoreductive surgery with HIPEC.


Assuntos
Líquidos Corporais , Procedimentos Cirúrgicos de Citorredução , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Reprodutibilidade dos Testes , Abdome
5.
Nat Commun ; 13(1): 7673, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509762

RESUMO

Phytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory systems. Despite the availability of three-dimensional structures of phytochromes and other two-component proteins, the conformational changes, which lead to activation of the protein, are not understood. We reveal cryo electron microscopy structures of the complete phytochrome from Deinoccocus radiodurans in its resting and photoactivated states at 3.6 Å and 3.5 Å resolution, respectively. Upon photoactivation, the photosensory core module hardly changes its tertiary domain arrangement, but the connector helices between the photosensory and the histidine kinase modules open up like a zipper, causing asymmetry and disorder in the effector domains. The structures provide a framework for atom-scale understanding of signaling in phytochromes, visualize allosteric communication over several nanometers, and suggest that disorder in the dimeric arrangement of the effector domains is important for phosphatase activity in a two-component system. The results have implications for the development of optogenetic applications.


Assuntos
Fitocromo , Fitocromo/metabolismo , Histidina Quinase/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Transdução de Sinais , Luz , Bactérias/metabolismo
6.
ACS Synth Biol ; 11(10): 3354-3367, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35998606

RESUMO

In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.


Assuntos
Fitocromo , Histidina Quinase/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Biliverdina , Optogenética , Luz , Bactérias/genética , Monoéster Fosfórico Hidrolases
7.
Photochem Photobiol Sci ; 21(11): 1881-1894, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35984631

RESUMO

Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.


Assuntos
Deinococcus , Fitocromo , Conformação Proteica , Cristalografia por Raios X , Fitocromo/química , Sítios de Ligação , Luz , Proteínas de Bactérias/química , Deinococcus/química
8.
Photochem Photobiol Sci ; 21(11): 1975-1989, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35906527

RESUMO

Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.


Assuntos
Deinococcus , Fitocromo , Fitocromo/química , Deinococcus/química , Histidina/metabolismo , Tirosina/metabolismo , Conformação Proteica , Água/metabolismo , Sítios de Ligação , Proteínas de Bactérias/química
9.
Photochem Photobiol Sci ; 20(9): 1173-1181, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34460093

RESUMO

Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.


Assuntos
Proteínas de Bactérias/química , Biliverdina/química , Deinococcus/química , Fitocromo/química , Sítios de Ligação , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Prótons , Solventes , Espectrofotometria Ultravioleta
10.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1001-1009, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342273

RESUMO

(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Šresolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Šresolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.


Assuntos
Flavoproteínas/química , Animais , Cristalografia , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/metabolismo , Drosophila melanogaster , Flavoproteínas/metabolismo , Temperatura
11.
Nat Commun ; 12(1): 4394, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285211

RESUMO

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fotorreceptores Microbianos/metabolismo , Transdução de Sinais/efeitos da radiação , Agrobacterium/enzimologia , Proteínas de Bactérias/ultraestrutura , Deinococcus/enzimologia , Histidina Quinase/ultraestrutura , Luz , Simulação de Dinâmica Molecular , Monoéster Fosfórico Hidrolases/ultraestrutura , Fotorreceptores Microbianos/ultraestrutura , Domínios Proteicos
12.
Phys Chem Chem Phys ; 23(9): 5615-5628, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33656023

RESUMO

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.


Assuntos
Azidas/química , Proteínas de Bactérias/química , Fenilalanina/análogos & derivados , Fitocromo/química , Sequência de Aminoácidos , Aminoácidos/química , Sítios de Ligação , Cinética , Modelos Moleculares , Fenilalanina/química , Processos Fotoquímicos , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem
13.
Front Cell Neurosci ; 15: 778900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046775

RESUMO

Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.

14.
Photochem Photobiol Sci ; 19(11): 1488-1510, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33107538

RESUMO

Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Processos Fotoquímicos , Fitocromo/metabolismo , Conformação Proteica , Transdução de Sinais
15.
Elife ; 92020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32228856

RESUMO

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.


Plants adapt to the availability of light throughout their lives because it regulates so many aspects of their growth and reproduction. To detect the level of light, plant cells use proteins called phytochromes, which are also found in some bacteria and fungi. Phytochrome proteins change shape when they are exposed to red light, and this change alters the behaviour of the cell. The red light is absorbed by a molecule known as chromophore, which is connected to a region of the phytochrome called the PHY-tongue. This region undergoes one of the key structural changes that occur when the phytochrome protein absorbs light, turning from a flat sheet into a helix. Claesson, Wahlgren, Takala et al. studied the structure of a bacterial phytochrome protein almost immediately after shining a very brief flash of red light using a laser. The experiments revealed that the structure of the protein begins to change within a trillionth of a second: specifically, the chromophore twists, which disrupts its attachment to the protein, freeing the protein to change shape. Claesson, Wahlgren, Takala et al. note that this structure is likely a very short-lived intermediate state, which however triggers more changes in the overall shape change of the protein. One feature of the rearrangement is the disappearance of a particular water molecule. This molecule can be found at the core of many different phytochrome structures and interacts with several parts of the chromophore and the phytochrome protein. It is unclear why the water molecule is lost, but given how quickly this happens after the red light is applied it is likely that this disappearance is an integral part of the reshaping process. Together these events disrupt the interactions between the chromophore and the PHY-tongue, enabling the PHY-tongue to change shape and alter the structure of the phytochrome protein. Understanding and controlling this process could allow scientists to alter growth patterns in plants, such as crops or weeds.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X , Luz , Fitocromo/química , Sítios de Ligação , Deinococcus/química , Lasers , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica
16.
Int J Hyperthermia ; 37(1): 293-300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208777

RESUMO

Background and Objectives: Postoperative thromboembolism is a significant cause of prolonged recovery in patients undergoing cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Thromboelastography (TEG) can detect hypercoagulable states and predict thromboembolic complications after surgery. This study assessed the impact of CRS and HIPEC on TEG values.Methods: TEG parameters reaction time (R), kinetics time (K), angle (α), maximum amplitude (MA), and lysis percent at 60 min (LY60) were determined preoperatively, and at the end of CRS, during HIPEC, and at the end of the operation using blood samples from 15 HIPEC patients. Platelets, P-TT, and aPTT were also determined before and after CRS.Results: A total of 75 samples were analyzed. During CRS, there was a significant reduction in the mean MA (3.06 mm, p = 0.001). The mean P-TT declined by 32% (p < 0.001) and mean platelets by 55 × 109/L (p < 0.001). During HIPEC, the mean R and K shortened by 1.04 min (p = 0.015) and 0.18 min (p = 0.018), respectively, whereas α increased by 2.48° (p = 0.005).Conclusions: During CRS, both TEG and conventional laboratory tests indicated hypocoagulation. During HIPEC, however, the initiation of coagulation and the kinetics of thrombin formation were accelerated.


Assuntos
Coagulação Sanguínea/fisiologia , Hipertermia Induzida/métodos , Assistência Perioperatória/métodos , Tromboelastografia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
17.
Photochem Photobiol ; 95(4): 969-979, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843203

RESUMO

Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH-dependent UV-Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.


Assuntos
Deinococcus/metabolismo , Fitocromo/química , Análise Espectral/métodos , Sítios de Ligação , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Fitocromo/metabolismo , Conformação Proteica
18.
IUCrJ ; 5(Pt 5): 619-634, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224965

RESUMO

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxo-bacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.

19.
Phys Chem Chem Phys ; 20(27): 18216-18225, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29938729

RESUMO

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains from Deinococcus radiodurans, the phytochrome 1 from Stigmatella aurantiaca, and a D. radiodurans H290T mutant. In the latter two, an otherwise conserved histidine next to the D-ring is replaced by a threonine. Our infrared absorption data indicate that the carbonyl of the D-ring is more strongly coordinated by hydrogen bonds when the histidine is missing. This is in apparent contrast with the crystal structure of the PAS-GAF domain of phytochrome 1 from S. aurantiaca (pdb code 4RPW), which did not resolve any obvious binding partners for the D-ring carbonyl. We present a new crystal structure of the H290T mutant of the PAS-GAF from D. radiodurans phytochrome. The 1.4 Å-resolution structure reveals additional water molecules, which fill the void created by the mutation. Two of the waters are significantly disordered, suggesting that flexibility might be important for the photoconversion. Finally, we report a spectral analysis which quantitatively explains why the histidine-less phytochromes do not reach equal Pfr-type absorption in the photoequilibrium compared to the Deinococcus radiodurans wild-type protein. The study highlights the importance of water molecules and the hydrogen bonding network around the chromophore for controlling the isomerization reaction and spectral properties of phytochromes.


Assuntos
Proteínas de Bactérias/química , Biliverdina/química , Fitocromo/química , Sítios de Ligação , Deinococcus/química , Ligação de Hidrogênio , Modelos Moleculares , Processos Fotoquímicos , Ligação Proteica , Conformação Proteica , Proteobactérias/química
20.
J Biol Chem ; 293(21): 8161-8172, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29622676

RESUMO

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the ß-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.


Assuntos
Proteínas de Bactérias/química , Deinococcus/metabolismo , Fenilalanina/química , Fitocromo/química , Conformação Proteica , Tirosina/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Fenilalanina/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...