Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 15(4): plad046, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37497441

RESUMO

Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C4-carbon fixation in developing culms. We tested whether C4-photosynthesis or dark-CO2 fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ13C in bulk organic matter and organic compounds. Further, pulse-13CO2-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ13C of young shoots and developing culms were higher (-26.3 to -26.9 ‰) compared to all organs of mature bamboos (-28.4 to -30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-13CO2-labelling, the polar fraction extracted from the skin tissues was slightly enriched in 13C, and only a weak 13C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO2 cannot be excluded and is more likely than C4-photosynthetic carbon fixation.

2.
J Environ Manage ; 330: 117114, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586368

RESUMO

Forest carbon stocks and sinks (CSSs) have been widely estimated using climate classification tables and linear regression (LR) models with common independent variables (IVs) such as the average diameter at breast height (DBH) of stems and root shoot ratio. However, this approach is relatively ineffective when the explanatory power of IVs is lower than that of unobservable variables. Various environmental and anthropogenic factors affect target variables that cause the correlation between them to be chaotic. Here, we designed a knife set (KS) approach combining LR models and the wandering through random forests (WTF) algorithm and applied it in a specific case of Phyllostachys edulis (Carrière) J. Houz. (P. edulis) forests, which have an irregular relationship between their belowground carbon (BGC) stocks and average DBH. We then validated the KS approach performed by cluster computing to estimate the aboveground carbon (AGC) and BGC stocks and the total net primary production (TNPP). The estimated CSSs were compared to the benchmark of the methodology that applied Tier 1 in the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories via 10-fold cross validation, and the KS approach significantly increased precision and accuracy of estimations. Our approach provides general insights to accurately estimate forest CSSs relying on evidence-based field data, even if some target variables are divergent in specific forest types. We also pointed out the reason why current fancy models containing machine learning (ML) or deep learning algorithms are not effective in predicting the target variables of certain chaotic systems is perhaps that the total explanatory power of observable variables is less than that of the total unobservable variables. Quantifying unobservable variables into observable variables is a linchpin of future works related to chaotic system estimation.


Assuntos
Sequestro de Carbono , Carbono , Mudança Climática
3.
Anim Sci J ; 93(1): e13764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36085592

RESUMO

Mastitis is a very common inflammatory disease of the mammary gland of dairy cows, resulting in a reduction of milk production and quality. Probiotics may serve as an alternative to antibiotics to prevent mastitis, and the use of probiotics in this way may lessen the risk of antibiotic resistant bacteria developing. We investigated the effect of oral feeding of probiotic Bacillus subtilis (BS) C-3102 strain on the onset of mastitis in dairy cows with a previous history of mastitis. BS feeding significantly decreased the incidence of mastitis, the average number of medication days and the average number of days when milk was discarded, and maintained the mean SCC in milk at a level substantially lower than the control group. BS feeding was associated with lower levels of cortisol and TBARS and increased the proportion of CD4+ T cells and CD11c+ CD172ahigh dendritic cells in the blood by flow cytometry analysis. Parturition increased the migrating frequency of granulocytes toward a milk chemoattractant cyclophilin A in the control cows, however, this was reduced by BS feeding, possibly indicating a decreased sensitivity of peripheral granulocytes to cyclophilin A. These results reveal that B. subtilis C-3102 has potential as a probiotic and has preventative capacity against mastitis in dairy cows.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Probióticos , Animais , Antibacterianos/uso terapêutico , Bacillus subtilis , Bovinos , Ciclofilina A , Feminino , Mastite Bovina/prevenção & controle
5.
Tree Physiol ; 42(4): 784-796, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34635913

RESUMO

Tree species that close stomata early in response to drought are likely to suffer from an imbalance between limited carbohydrate supply due to reduced photosynthesis and metabolic demand. Our objective was to clarify the dynamic responses of non-structural carbohydrates to drought in a water-saving species, the hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.). To this end, we pulse-labeled young trees with 13CO2 10 days after the beginning of the drought treatment. Trees were harvested 7 days later, early during drought progression, and 86 days later when they had suffered from a long and severe drought. The labeled carbon (C) was traced in phloem extract, in the organic matter and starch of all the organs, and in the soluble sugars (sucrose, glucose and fructose) of the most metabolically active organs (foliage, green branches and fine roots). No drought-related changes in labeled C partitioning between belowground and aboveground organs were observed. The C allocation between non-structural carbohydrates was altered early during drought progression: starch concentration was lower by half in the photosynthetic organs, while the concentration of almost all soluble sugars tended to increase. The preferential allocation of labeled C to glucose and fructose reflected an increased demand for soluble sugars for osmotic adjustment. After 3 months of a lethal drought, the concentrations of soluble sugars and starch were admittedly lower in drought-stressed trees than in the controls, but the pool of non-structural carbohydrates was far from completely depleted. However, the allocation to storage had been impaired by drought; photosynthesis and the sugar translocation rate had also been reduced by drought. Failure to maintain cell turgor through osmoregulation and to refill embolized xylem due to the depletion in soluble sugars in the roots could have resulted in tree mortality in hinoki cypress, though the total pool of carbohydrate was not completely depleted.


Assuntos
Chamaecyparis , Secas , Carboidratos , Carbono/metabolismo , Chamaecyparis/metabolismo , Frutose , Glucose , Folhas de Planta/fisiologia , Amido/metabolismo , Açúcares/metabolismo , Árvores/fisiologia
6.
Isotopes Environ Health Stud ; 53(6): 646-659, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28756690

RESUMO

Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO2 and water vapour were observed. The isotope ratios of both CO2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ13C-CO2 and δ18O-CO2 increased, while δ2H-H2Ov and δ18O-H2Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO2 and H2Ov could be used as a tracer of meteorological information.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Cidades , Deutério/análise , Isótopos de Oxigênio/análise , Vapor/análise , Tempestades Ciclônicas , Japão , Lasers , Meteorologia , Análise Espectral
7.
Hydrol Process ; 31(24): 4338-4353, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32336875

RESUMO

To evaluate water use and the supporting water source of a tropical rainforest, a 4-year assessment of evapotranspiration (ET) was conducted in Pasoh Forest Reserve, a lowland dipterocarp forest in Peninsular Malaysia. The eddy covariance method and isotope signals of rain, plant, soil, and stream waters were used to determine forest water sources under different moisture conditions. Four sampling events were conducted to collect soil and plant twig samples in wet, moderate, dry, and very dry conditions for the identification of isotopic signals. Annual ET from 2012 to 2015 was quite stable with an average of 1,182 ± 26 mm, and a substantial daily ET was observed even during drought periods, although some decline was observed, corresponding with volumetric soil water content. During the wet period, water for ET was supplied from the surface soil layer between 0 and 0.5 m, whereas in the dry period, approximately 50% to 90% was supplied from the deeper soil layer below 0.5-m depth, originating from water precipitated several months previously at this forest. Isotope signatures demonstrated that the water sources of the plants, soil, and stream were all different. Water in plants was often different from soil water, probably because plant water came from a different source than water that was strongly bound to the soil particles. Plants showed no preference for soil depth with their size, whereas the existence of storage water in the xylem was suggested. The evapotranspiration at this forest is balanced and maintained using most of the available water sources except for a proportion of rapid response run-off.

8.
Isotopes Environ Health Stud ; 52(6): 603-18, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27142631

RESUMO

We conducted continuous, high time-resolution measurements of CO2 and water vapour isotopologues ((16)O(12)C(16)O, (16)O(13)C(16)O and (18)O(12)C(16)O for CO2, and H2(18)O for water vapour) in a red pine forest at the foot of Mt. Fuji for 9 days from the end of July 2010 using in situ absorption laser spectroscopy. The δ(18)O values in water vapour were estimated using the δ(2)H-δ(18)O relationship. At a scale of several days, the temporal variations in δ(18)O-CO2 and δ(18)O-H2O are similar. The orders of the daily Keeling plots are almost identical. A possible reason for the similar behaviour of δ(18)O-CO2 and δ(18)O-H2O is considered to be that the air masses with different water vapour isotopic ratios moved into the forest, and changed the atmosphere of the forest. A significant correlation was observed between δ(18)O-CO2 and δ(13)C-CO2 values at nighttime (r(2)≈0.9) due to mixing between soil (and/or leaf) respiration and tropospheric CO2. The ratios of the discrimination coefficients (Δa/Δ) for oxygen (Δa) and carbon (Δ) isotopes during photosynthesis were estimated in the range of 0.7-1.2 from the daytime correlations between δ(18)O-CO2 and δ(13)C-CO2 values.


Assuntos
Dióxido de Carbono/análise , Florestas , Isótopos/análise , Análise Espectral/métodos , Vapor , Lasers
9.
Vet Res ; 46: 80, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26163364

RESUMO

Cyclophilin A (CyPA) was originally discovered in bovine thymocytes as a cytosolic binding protein of the immunosuppressive drug cyclosporine A. Recent studies have revealed that in mice and humans, CyPA is secreted from cells in injured or infected tissues and plays a role in recruiting inflammatory cells in those tissues. Here we found that in cattle abundant level of extracellular CyPA was observed in tissues with inflammation. To aid in investigating the role of extracellular CyPA in cattle, we generated recombinant bovine CyPA (rbCyPA) and tested its biological activity as an inflammatory mediator. When bovine peripheral blood cells were treated with rbCyPA in vitro, we observed that rbCyPA reacts with the membranous surface of granulocytes, monocytes and lymphocytes. Chemotaxis analysis showed that the granulocytes migrate toward rbCyPA and the migration is inhibited by pre-treatment with an anti-bovine CyPA antibody. These results indicate that, as for mice and humans, extracellular CyPA possesses chemotactic activity to recruit inflammatory cells (e.g., granulocytes) in cattle, and could thus be a potential therapeutic target for the treatment of inflammation.


Assuntos
Quimiotaxia , Ciclofilina A/genética , Granulócitos/fisiologia , Mastite Bovina/imunologia , Animais , Bovinos , Ciclofilina A/metabolismo , Feminino , Granulócitos/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Tree Physiol ; 35(1): 61-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25595752

RESUMO

In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 µmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures.


Assuntos
Fotossíntese , Estômatos de Plantas/anatomia & histologia , Floresta Úmida , Árvores/fisiologia , Clorofila/química , Dipterocarpaceae/anatomia & histologia , Dipterocarpaceae/fisiologia , Euphorbiaceae/anatomia & histologia , Euphorbiaceae/fisiologia , Malásia , Fotoperíodo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Rubiaceae/anatomia & histologia , Rubiaceae/fisiologia , Árvores/anatomia & histologia
11.
Tree Physiol ; 32(7): 839-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22696269

RESUMO

Patchy stomatal closure occurs in plants with heterobaric leaves, in which vertical extensions of bundle sheath cells delimit the mesophyll and restrict the diffusion of CO(2). The scale of patchy stomatal behavior was investigated in this study. The distribution of PSII quantum yield (Φ(II)) obtained from chlorophyll fluorescence images was used to evaluate the scale of stomatal patchiness and its relationship with leaf photosynthesis in the sun leaves of 2-year-old saplings of Quercus crispula Blume. Fluorescent patches were observed only during the day with low stomatal conductance. Comparison of numerical simulation of leaf gas exchange and chlorophyll fluorescence images showed that heterogeneous distribution of electron transport rate through PSII (J) was observed following stomatal closure with a bimodal manner under both natural and saturated photosynthetic photon flux densities. Thus, fluorescence patterns can be interpreted in terms of patchy stomatal closure. The mapping of J from chlorophyll fluorescence images showed that the scale of stomatal patchiness was approximately 2.5-fold larger than that of anatomical patches (lamina areas bounded by bundle sheath extensions within lamina). Our results suggest the spatial scale of stomatal patches in Q. crispula leaves.


Assuntos
Clorofila/metabolismo , Fluorometria/instrumentação , Fluorometria/métodos , Imageamento Tridimensional/métodos , Estômatos de Plantas/fisiologia , Quercus/fisiologia , Ritmo Circadiano/fisiologia , Simulação por Computador , Gases/metabolismo , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/fisiologia , Fatores de Tempo
12.
J Plant Res ; 125(6): 735-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22644315

RESUMO

Vertical variation in leaf gas exchange characteristics of trees grown in a lowland dipterocarp forest in Peninsular Malaysia was investigated. Maximum net photosynthetic rate, stomatal conductance, and electron transport rate of leaves at the upper canopy, lower canopy, and forest floor were studied in situ with saturated condition photosynthetic photon flux density. The dark respiration rate of leaves at the various heights was also studied. Relationships among gas exchange characteristics, and also with nitrogen content per unit leaf area and leaf dry matter per area were clearly detected, forming general equations representing the vertical profile of several important parameters related to gas exchange. Numerical analysis revealed that the vertical distribution of gas exchange parameters was well determined showing both larger carbon gain for the whole canopy and at the same time positive carbon gain for the leaves of the lowest layer. For correct estimation of gas exchange at both leaf and canopy scales using multi-layer models, it is essential to consider the vertical distribution of gas exchange parameters with proper scaling coefficients.


Assuntos
Dipterocarpaceae/metabolismo , Gases/metabolismo , Folhas de Planta/metabolismo , Carbono/metabolismo , Respiração Celular , Simulação por Computador , Dipterocarpaceae/fisiologia , Transporte de Elétrons , Geografia , Umidade , Malásia , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Chuva , Temperatura , Clima Tropical
13.
Tree Physiol ; 32(3): 303-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22367761

RESUMO

The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.


Assuntos
Raízes de Plantas/fisiologia , Árvores/anatomia & histologia , Árvores/fisiologia , Respiração Celular/fisiologia , Malásia , Modelos Biológicos , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Chuva , Temperatura , Árvores/metabolismo , Clima Tropical
14.
Tree Physiol ; 31(2): 160-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383025

RESUMO

We investigated effects of heterogeneous stomatal behavior on diurnal patterns of leaf gas exchange in 10 tree species. Observations were made in middle and upper canopy layers of potted tropical rainforest trees in a nursery at the Forest Research Institute Malaysia. Measurements were taken from 29 January to 3 February 2010. We measured in situ diurnal changes in net photosynthetic rate and stomatal conductance in three leaves of each species under natural light. In both top-canopy and sub-canopy species, midday depression of net assimilation rate occurred in late morning. Numerical analysis showed that patchy bimodal stomatal behavior occurred only during midday depression, suggesting that the distribution pattern of stomatal apertures (either uniform or non-uniform stomatal behavior) varies flexibly within single days. Direct observation of stomatal aperture using Suzuki's Universal Micro-Printing (SUMP) method demonstrated midday patchy stomatal closure that fits a bimodal pattern in Shorea leprosula Miq., Shorea macrantha Brandis. and Dipterocarpus tempehes V.Sl. Inhibition of net assimilation rate and stomatal conductance appears to be a response to changes in vapor pressure deficit (VPD). Variable stomatal closure with increasing VPD is a mechanism used by a range of species to prevent excess water loss from leaves through evapotranspiration (viz., inhibition of midday leaf gas exchange). Bimodal stomatal closure may occur among adjacent stomata within a single patch, rather than among patches on a single leaf. Our results suggest the occurrence of patches at several scales within single leaves. Further analysis should consider variable spatial scales in heterogeneous stomatal behavior between and within patches and within single leaves.


Assuntos
Dióxido de Carbono/metabolismo , Clusiaceae/metabolismo , Dipterocarpaceae/metabolismo , Estômatos de Plantas/metabolismo , Árvores/metabolismo , Ritmo Circadiano , Malásia , Fotossíntese , Folhas de Planta/metabolismo , Transpiração Vegetal , Fatores de Tempo , Clima Tropical
15.
Tree Physiol ; 29(4): 505-15, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19203974

RESUMO

We observed diurnal and seasonal patterns of leaf-scale gas exchange within the crown of a Dipterocarpus sublamellatus Foxw. tree growing in a lowland dipterocarp forest at Pasoh, Peninsular Malaysia. Observations were carried out nine times over 6 years, from September 2002 to December 2007. Observation periods included both wet and mild-dry periods, and natural and saturated photosynthetic photon flux density (PPFD) light conditions. In situ measurements of the diurnal change in net photosynthetic rate and in stomatal conductance were carried out on canopy leaves of a 40-m-tall D. sublamellatus tree, which was accessed from a canopy corridor. A diurnal change in electron transport rate was observed under saturated PPFD conditions. The maximum net assimilation rate was approximately 10 micromol m(-2) s(-1). There was a clear inhibition of the net assimilation rate coupled with stomatal closure after late morning and this inhibition occurred year-round. Although the electron transport rate decreased alongside this inhibition, it sometimes followed on. Numerical analysis showed that the main factor in the inhibition of the net assimilation rate was patchy bimodal stomatal closure, which occurred in both mild-dry and wet periods. The midday depression occurred year-round, though there are fluctuations in soil moisture during the mild-dry and wet periods. The magnitude of the inhibition was not related to soil water content but was related to vapor pressure deficit (VPD): that is, whether the days were sunny and hot or cloudy and cool. On cloudy, cool days in the wet period, the net photosynthesis was only moderately inhibited, but it still decreased in the afternoon and was coupled with patchy stomatal closure, even in quite moderate VPD, leaf temperature and PPFD conditions. Our results suggest that patchy stomatal closure signaled by the increase in VPD, in transpiration and by circadian rhythms, was the key factor in constraining midday leaf gas exchange of the D. sublamellatus canopy leaves.


Assuntos
Dióxido de Carbono/metabolismo , Dipterocarpaceae/metabolismo , Árvores/metabolismo , Ritmo Circadiano , Malásia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Chuva , Estações do Ano , Fatores de Tempo , Clima Tropical
16.
Tree Physiol ; 26(12): 1565-78, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17169896

RESUMO

Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.


Assuntos
Ecossistema , Magnoliopsida/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Ritmo Circadiano , Clima , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...