Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(6): 106943, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37332612

RESUMO

The bone marrow (BM) is a complex microenvironment, coordinating the production of billions of blood cells every day. Despite its essential role and its relevance to hematopoietic diseases, this environment remains poorly characterized. Here we present a high-resolution characterization of the niche in health and acute myeloid leukemia (AML) by establishing a single-cell gene expression database of 339,381 BM cells. We found significant changes in cell type proportions and gene expression in AML, indicating that the entire niche is disrupted. We then predicted interactions between hematopoietic stem and progenitor cells (HSPCs) and other BM cell types, revealing a remarkable expansion of predicted interactions in AML that promote HSPC-cell adhesion, immunosuppression, and cytokine signaling. In particular, predicted interactions involving transforming growth factor ß1 (TGFB1) become widespread, and we show that this can drive AML cell quiescence in vitro. Our results highlight potential mechanisms of enhanced AML-HSPC competitiveness and a skewed microenvironment, fostering AML growth.

2.
J Cell Physiol ; 234(10): 18707-18719, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30916405

RESUMO

Microvesicles (MVs) derived from bone marrow niche components have an important role in genetic reprogramming and subsequent drugs induce apoptosis in leukemic cells. Here, we have found that undertreatment of curcumin or daunorubicin, the cross-talk through MVs of KG-1-bone marrow mesenchymal stem cells (BMSCs), significantly downregulates the expression of the survival gene osteopontin (OPN), CXCL-12, IL-6 (interleukin-6), STAT-3, and VCAM-1 (vascular cell adhesion molecule 1) in treated-KG-1 cells as well as exclusively upregulates CXCL-12 in BMSCs. Drug treated-cell populations' MVs of both single cultured osteoblasts (OBs) and cocultured KG-1 + BMSCs + OBs similarly upregulate survival mediators' OPN, CXCL-12, IL-6, STAT-3, and VCAM-1 in treated-KG-1 cells. Likewise, isolated MVs from KG-1 cells or communication between KG-1, BMSCs, and OBs treated by drugs increase the expression of genes OPN, CXCL-12, IL-6, STAT3, and VCAM-1 by OBs. MVs derived from KG-1 + BMSCs + OBs reduce drug-induced apoptosis in KG-1 cells. This suggests MVs-mediated information transfer is a procedure whereby OBs could overcome BMSCs-induced apoptosis in drug-treated-KG-1 cells.


Assuntos
Apoptose , Micropartículas Derivadas de Células/metabolismo , Curcumina/farmacologia , Leucemia Mieloide/patologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/metabolismo , Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/ultraestrutura , Regulação para Baixo/efeitos dos fármacos , Difusão Dinâmica da Luz , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide/genética , Osteoblastos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...