Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12412, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816387

RESUMO

This study introduces microbiologically induced calcium phosphate precipitation (MICPP) as a novel and environmentally sustainable method of soil stabilization. Using Limosilactobacillus sp., especially NBRC 14511 and fish bone solution (FBS) extracted from Tuna fish bones, the study was aimed at testing the feasibility of calcium phosphate compounds (CPCs) deposition and sand stabilization. Dynamic changes in pH and calcium ion (Ca2+) concentration during the precipitation experiments affected the precipitation and sequential conversion of dicalcium phosphate dihydrate (DCPD) to hydroxyapatite (HAp), which was confirmed by XRD and SEM analysis. Sand solidification experiments demonstrated improvements in unconfined compressive strength (UCS), especially at higher Urea/Ca2+ ratios. The UCS values obtained were 10.35 MPa at a ratio of 2.0, 3.34 MPa at a ratio of 1.0, and 0.43 MPa at a ratio of 0.5, highlighting the advantages of MICPP over traditional methods. Microstructural analysis further clarified the mineral composition, demonstrating the potential of MICPP in environmentally friendly soil engineering. The study highlights the promise of MICPP for sustainable soil stabilization, offering improved mechanical properties and reducing environmental impact, paving the way for novel geotechnical practices.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Areia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Areia/química , Animais , Concentração de Íons de Hidrogênio , Durapatita/química , Solo/química , Força Compressiva , Difração de Raios X
2.
Sci Total Environ ; 900: 165823, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517719

RESUMO

The method of soil improvement by calcium phosphate precipitation is a novel, environmentally friendly, and non-toxic technique. Such technology provides advantages over ureolytic induced calcite precipitation (UICP), the most popular and widely used method in the field of geotechnical engineering. In this paper, an investigation of the consolidation of fine and coarse sand samples by enzyme induced calcium phosphate precipitation (EICPP) was carried out. Tuna bones were used as an alternative source of calcium and phosphorus ions, as one of the most popular fish species in Japan and the main source of food industry waste. Unconfined compressive strength (UCS) of the samples after 21 days of daily injection of the solution showed an increase in strength up to 6,05 MPa in fine and up to 4,3 MPa in coarse sand samples. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (SEM-EDS) analysis were performed to investigate the nature and type of deposition. Analyses confirmed that deposition is composed of brushite with needle-like crystals in the case of Toyoura sand and flower-like crystals in the case of Mikawa sand. SEM-EDS showed a presence of both, calcium, and phosphorus in the precipitate, indicating the presence of calcium phosphate compounds (CPCs). This study reveals that tuna bones are a rich source of calcium and phosphorus for EICPP, which results in a strengthening of silicate soil up to 3.4-6.05 MPa and is able to reduce ammonia emissions by 85.7 % - 97.5 % compared to UICP.


Assuntos
Cálcio , Solo , Cálcio/análise , Areia , Microscopia Eletrônica de Varredura , Fosfatos de Cálcio/química , Compostos de Cálcio/química , Carbonato de Cálcio/química , Fósforo/análise
3.
Front Bioeng Biotechnol ; 11: 1216171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388775

RESUMO

Microbial induced carbonate precipitation (MICP) through the ureolysis metabolic pathway is one of the most studied topics in biocementation due to its high efficiency. Although excellent outcomes have proved the potential of this technique, microorganisms face some obstacles when considering complicated situations in the real field, such as bacterial adaptability and survivability issues. This study made the first attempt to seek solutions to this issue from the air, exploring ureolytic airborne bacteria with resilient features to find a solution to survivability issues. Samples were collected using an air sampler in Sapporo, Hokkaido, a cold region where sampling sites were mostly covered with dense vegetation. After two rounds of screening, 12 out of 57 urease-positive isolates were identified through 16S rRNA gene analysis. Four potentially selected strains were then evaluated in terms of growth pattern and activity changes within a range of temperatures (15°C-35°C). The results from sand solidification tests using two Lederbergia strains with the best performance among the isolates showed an improvement in unconfined compressive strength up to 4-8 MPa after treatment, indicating a high MICP efficiency. Overall, this baseline study demonstrated that the air could be an ideal isolation source for ureolytic bacteria and laid a new pathway for MICP applications. More investigations on the performance of airborne bacteria under changeable environments may be required to further examine their survivability and adaptability.

4.
Materials (Basel) ; 16(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36676340

RESUMO

For over a thousand years, many ancient cements have remained durable despite long-term exposure to atmospheric or humid agents. This review paper summarizes technologies of worldwide ancient architectures which have shown remarkable durability that has preserved them over thousands of years of constant erosion. We aim to identify the influence of organic and inorganic additions in altering cement properties and take these lost and forgotten technologies to the production frontline. The types of additions were usually decided based on the local environment and purpose of the structure. The ancient Romans built magnificent structures by making hydraulic cement using volcanic ash. The ancient Chinese introduced sticky rice and other local materials to improve the properties of pure lime cement. A variety of organic and inorganic additions used in traditional lime cement not only changes its properties but also improves its durability for centuries. The benefits they bring to cement may also be useful in enzyme-induced carbonate precipitation (EICP) and microbially induced carbonate precipitation (MICP) fields. For instance, sticky rice has been confirmed to play a crucial role in regulating calcite crystal growth and providing interior hydrophobic conditions, which contribute to improving the strength and durability of EICP- and MICP-treated samples in a sustainable way.

5.
J Biosci Bioeng ; 134(6): 521-527, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36207257

RESUMO

Acid-tolerant bacteria, which multiply under neutral pH and can survive under acidic pH conditions, have a potential role in various applications under acidic conditions. Despite higher biomass productivity, their isolation and utilisation are not sufficiently developed compared to those of acidophiles. It takes considerable effort to distinguish the acid-tolerant bacteria from the rest of the bacterial community using conventional screening methods. Thus, we developed a novel screening method for acid-tolerant bacteria, which involves shifting the pH between acidic and neutral conditions. With this method, the bacterium Enterobacter sp. AC06 was isolated. Based on comparisons with the results reported in previous studies, the strain can be classified as acid-tolerant bacteria. The decreases in the live cell concentrations were 3.87 and 6.16 log cycles after 3 h acid treatment under pH 3.0 and 2.5, respectively. These results suggest that it is possible to isolate acid-tolerant bacteria using the pH shift culture method. In summary, this is the first study on bacterial screening based on acid tolerance. Our novel method potentially contributes to the understanding and utilisation of acid-tolerant bacteria by enhancing screening efficiency. Furthermore, our novel concept shift culture is potentially valuable for screening previously uncultured bacteria tolerant to various selective stress conditions.


Assuntos
Bactérias , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...