Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473804

RESUMO

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains an unusually high number of mutations (>30) in the spike protein, raising concerns of escape from vaccines, convalescent sera and therapeutic drugs. Here we analyze the alteration of neutralizing titer with Omicron pseudovirus. Sera obtained 3 months after double BNT162b2 vaccination exhibit approximately 18-fold lower neutralization titers against Omicron than parental virus. Convalescent sera from Alpha and Delta patients allow similar levels of breakthrough by Omicron. Domain-wise analysis using chimeric spike revealed that this efficient evasion was primarily achieved by mutations clustered in the receptor-binding domain, but that multiple mutations in the N-terminal domain contributed as well. Omicron escapes a therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective. The ACE2 decoy is another virus-neutralizing drug modality that is free, at least in theory, from complete escape. Deep mutational analysis demonstrated that, indeed, engineered ACE2 prevented escape for each single-residue mutation in the receptor-binding domain, similar to immunized sera. Engineered ACE2 neutralized Omicron comparable to Wuhan and also showed a therapeutic effect against Omicron infection in hamsters and human ACE2 transgenic mice. Like previous SARS-CoV-2 variants, some sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge. One Sentence SummaryOmicron, carrying [~]30 mutations in the spike, exhibits effective immune evasion but remains highly susceptible to blockade by engineered ACE2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-299891

RESUMO

The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor via receptor binding domain (RBD) to enter into the cell and inhibiting this interaction is a main approach to inhibit SARS-CoV-2 infection. We engineered ACE2 to enhance the affinity with directed evolution in 293T cells. Three cycles of random mutation and cell sorting achieved 100-fold higher affinity to RBD than wild-type ACE2. The extracellular domain of modified ACE2 fused to the human IgG1-Fc region had stable structure and neutralized SARS-CoV-2 without the emergence of mutational escape. Therapeutic administration protected hamsters from SARS-CoV-2 infection, decreasing lung virus titers and pathology. Engineering ACE2 decoy receptors with human cell-based directed evolution is a promising approach to develop a SARS-CoV-2 neutralizing drug that has affinity comparable to monoclonal antibodies yet displaying resistance to escape mutations of virus. One Sentence SummaryEngineered ACE2 decoy receptor has a therapeutic potential against COVID-19 without viral escape mutation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA