Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Lett ; 8(3): 321-327, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603216

RESUMO

In the field of computational histopathology, computer-assisted diagnosis systems are important in obtaining patient-specific diagnosis for various diseases and help precision medicine. Therefore, many studies on automatic analysis methods for digital pathology images have been reported. In this work, we discuss an automatic feature extraction and disease stage classification method for glioblastoma multiforme (GBM) histopathological images. In this paper, we use deep convolutional neural networks (Deep CNNs) to acquire feature descriptors and a classification scheme simultaneously. Further, comparisons with other popular CNNs objectively as well as quantitatively in this challenging classification problem is undertaken. The experiments using Glioma images from The Cancer Genome Atlas shows that we obtain 96.5 % average classification accuracy for our network and for higher cross validation folds other networks perform similarly with a higher accuracy of 98.0 % . Deep CNNs could extract significant features from the GBM histopathology images with high accuracy. Overall, the disease stage classification of GBM from histopathological images with deep CNNs is very promising and with the availability of large scale histopathological image data the deep CNNs are well suited in tackling this challenging problem.

2.
J Digit Imaging ; 26(5): 958-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23546774

RESUMO

It is often difficult for clinicians to decide correctly on either biopsy or follow-up for breast lesions with masses on ultrasonographic images. The purpose of this study was to develop a computerized determination scheme for histological classification of breast mass by using objective features corresponding to clinicians' subjective impressions for image features on ultrasonographic images. Our database consisted of 363 breast ultrasonographic images obtained from 363 patients. It included 150 malignant (103 invasive and 47 noninvasive carcinomas) and 213 benign masses (87 cysts and 126 fibroadenomas). We divided our database into 65 images (28 malignant and 37 benign masses) for training set and 298 images (122 malignant and 176 benign masses) for test set. An observer study was first conducted to obtain clinicians' subjective impression for nine image features on mass. In the proposed method, location and area of the mass were determined by an experienced clinician. We defined some feature extraction methods for each of nine image features. For each image feature, we selected the feature extraction method with the highest correlation coefficient between the objective features and the average clinicians' subjective impressions. We employed multiple discriminant analysis with the nine objective features for determining histological classification of mass. The classification accuracies of the proposed method were 88.4 % (76/86) for invasive carcinomas, 80.6 % (29/36) for noninvasive carcinomas, 86.0 % (92/107) for fibroadenomas, and 84.1 % (58/69) for cysts, respectively. The proposed method would be useful in the differential diagnosis of breast masses on ultrasonographic images as diagnosis aid.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia Mamária/métodos , Diagnóstico Diferencial , Análise Discriminante , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
J Digit Imaging ; 25(3): 377-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21989574

RESUMO

In a computer-aided diagnosis (CADx) scheme for evaluating the likelihood of malignancy of clustered microcalcifications on mammograms, it is necessary to segment individual calcifications correctly. The purpose of this study was to develop a computerized segmentation method for individual calcifications with various sizes while maintaining their shapes in the CADx schemes. Our database consisted of 96 magnification mammograms with 96 clustered microcalcifications. In our proposed method, a mammogram image was decomposed into horizontal subimages, vertical subimages, and diagonal subimages for a second difference at scales 1 to 4 by using a filter bank. The enhanced subimages for nodular components (NCs) and the enhanced subimages for both nodular and linear components (NLCs) were obtained from analysis of a Hessian matrix composed of the pixel values in those subimages for the second difference at each scale. At each pixel, eight objective features were given by pixel values in the subimages for NCs at scales 1 to 4 and the subimages for NLCs at scales 1 to 4. An artificial neural network with the eight objective features was employed to enhance calcifications on magnification mammograms. Calcifications were finally segmented by applying a gray-level thresholding technique to the enhanced image for calcifications. With the proposed method, a sensitivity of calcifications within clustered microcalcifications and the number of false positives per image were 96.5% (603/625) and 1.69, respectively. The average shape accuracy for segmented calcifications was also 91.4%. The proposed method with high sensitivity of calcifications while maintaining their shapes would be useful in the CADx schemes.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Diagnóstico por Computador/métodos , Mamografia/métodos , Algoritmos , Inteligência Artificial , Feminino , Humanos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Interpretação de Imagem Radiográfica Assistida por Computador , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...