Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587392

RESUMO

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Assuntos
Antivirais , Dibenzotiepinas , Triazinas , Antivirais/farmacologia , Humanos , Triazinas/farmacologia , Dibenzotiepinas/farmacologia , Gammainfluenzavirus/efeitos dos fármacos , Gammainfluenzavirus/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Células Madin Darby de Rim Canino , Cães , Ciclopropanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Testes de Neutralização , Piridinas/farmacologia
2.
Jpn J Infect Dis ; 77(2): 105-111, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38030271

RESUMO

Potency tests for influenza vaccines are currently performed using a single-radial immunodiffusion (SRID) assay, which requires a reference antigen and anti-hemagglutinin (HA) serum as reference reagents. Reagents must be newly prepared each time a strain used for vaccine production is modified. Therefore, establishing reference reagents of consistent quality is crucial for conducting vaccine potency tests accurately and precisely. Here, we established reference reagents for the SRID assay to conduct lot release tests of quadrivalent influenza vaccines in Japan during the 2022/23 influenza season. The potency of reference antigens during storage was confirmed. Furthermore, we evaluated the cross-reactivity of each antiserum raised against the HA protein of the 2 lineages of influenza B virus toward different lineages of influenza B virus antigens to select a suitable procedure for the SRID assay for accurate measurement. Finally, the intralaboratory reproducibility of the SRID assay using the established reference reagents was validated, and the SRID reagents had sufficient consistent quality, comparable to that of the reagents used for testing vaccines during previous influenza seasons. Our study contributes to the quality control of influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Estações do Ano , Japão , Reprodutibilidade dos Testes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunodifusão/métodos
3.
Euro Surveill ; 28(39)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37768560

RESUMO

A community cluster of influenza A(H3N2) caused by viruses with an E199G substitution in PA was detected in Nara, Japan, between February and March 2023. The three patients with these mutant viruses had not received antiviral treatment before specimen collection but patients in the same hospital had. The sequences of the mutant viruses were closely related, suggesting clonal spread in Nara. They showed reduced susceptibility to baloxavir in vitro; however, the clinical significance of the PA E199G substitution remains unclear.


Assuntos
Influenza Humana , Tiepinas , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Japão , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética
4.
Antiviral Res ; 216: 105671, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451629

RESUMO

The emergence and spread of antiviral-resistant SARS-CoV-2 is of great concern. In this study, we evaluated the propensity of Omicron variants to escape from RNA-dependent RNA polymerase (RdRP) inhibitors and 3C-like protease (3CLpro) inhibitors. SARS-CoV-2 Delta and Omicron variants were serially passaged in vitro in the presence of RdRP inhibitors (remdesivir and molnupiravir) and 3CLpro inhibitors (nirmatrelvir and lufotrelvir) to detect SARS-CoV-2 escape mutants. After five passages with 3CLpro inhibitors, mutant viruses that escaped from 3CLpro inhibitors emerged; however, in the presence of RdRP inhibitors all variants disappeared within 2-4 passages. Our findings suggest that the frequency of SARS-CoV-2 mutant escape from RdRP inhibitors is lower than that from 3CLpro inhibitors. We also found that Delta variants were more likely to acquire amino acid substitutions associated with resistance to 3CLpro inhibitors under the selective pressure of this drug compared with Omicron variants.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Antivirais/farmacologia , Leucina , RNA Polimerase Dependente de RNA/genética , Inibidores de Proteases/farmacologia
5.
Pediatr Infect Dis J ; 42(8): e268-e273, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079571

RESUMO

BACKGROUND: Advances in multiplex polymerase chain reaction (PCR) methods have enabled the simultaneous detection of multiple respiratory viruses. We aimed to estimate the clinical and virologic impacts of influenza and other respiratory virus co-infection in children. METHODS: We enrolled 38 and 35 children diagnosed with influenza and treated with baloxavir marboxil (baloxavir) and oseltamivir, respectively. We performed quantitative reverse transcription-PCR to detect and measure the levels of noninfluenza viruses from 3 nasopharyngeal swab samples collected before and on days 3 and 5 after the initial antiviral dose. We assessed patients' clinical information using questionnaires. RESULTS: One or more respiratory viruses other than influenza virus were detected in 26 (35.6%) of 73 children before antiviral treatment. The influenza virus load and clinical characteristics on the day of influenza onset were similar between children with and without virus co-infections. Of the 26 and 32 children without the emergence of the reduced baloxavir and oseltamivir susceptible variants after treatment, 8 (30.8%) and 7 (21.9%) children were dually co-infected with human rhinovirus only, respectively. The level of human rhinovirus RNA on day 0 in these children was less than -3 log 10 that of influenza virus RNA, and the human rhinovirus co-infection had no impact on the disease course either clinically or virologically. CONCLUSIONS: When multiple respiratory viruses are detected in the same patient, it is necessary to assess clinical symptoms as well as the levels of detected viruses to determine which virus contributes to the development of illness.


Assuntos
Coinfecção , Influenza Humana , Viroses , Vírus , Humanos , Criança , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Oseltamivir/uso terapêutico , Coinfecção/epidemiologia , Coinfecção/tratamento farmacológico , Antivirais/uso terapêutico
6.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680284

RESUMO

The emergence and spread of antiviral-resistant influenza viruses are of great concern. To minimize the public health risk, it is important to monitor antiviral susceptibilities of influenza viruses. Analyses of the antiviral susceptibilities of influenza A and B viruses have been conducted globally; however, those of influenza C and D viruses are limited. Here, we determined the susceptibilities of influenza C viruses representing all six lineages (C/Taylor, C/Yamagata, C/Sao Paulo, C/Aichi, C/Kanagawa, and C/Mississippi) and influenza D viruses representing four lineages (D/OK, D/660, D/Yama2016, and D/Yama2019) to RNA polymerase inhibitors (baloxavir and favipiravir) by using a focus reduction assay. All viruses tested were susceptible to both drugs. We then performed a genetic analysis to check for amino acid substitutions associated with baloxavir and favipiravir resistance and found that none of the viruses tested possessed these substitutions. Use of the focus reduction assay with the genotypic assay has proven valuable for monitoring the antiviral susceptibilities of influenza C and D viruses as well as influenza A and B viruses. Antiviral susceptibility monitoring of all influenza virus types should continue in order to assess the public health risks posed by these viruses.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Brasil , Farmacorresistência Viral/genética
7.
Influenza Other Respir Viruses ; 17(1): e13090, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36567444

RESUMO

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), prompted worldwide COVID-19 surveillance. To investigate the impact of COVID-19 on influenza activity, we used global surveillance data collected since 2019 to compare the number of cases positive for COVID-19 and for influenza across 22 representative countries (Australia, Brazil, Canada, China, Egypt, France, Germany, India, Israel, Italy, Japan, Mexico, The Netherlands, The Philippines, Poland, The Republic of Korea, South Africa, Spain, Thailand, The United Kingdom, The United States, and Vietnam). Our results demonstrate alternating prevalence of SARS-CoV-2 and influenza virus.


Assuntos
COVID-19 , Influenza Humana , Estados Unidos , Humanos , Influenza Humana/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , França , Espanha
9.
Methods Mol Biol ; 2556: 287-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175640

RESUMO

Three types of assays--colorimetric, fluorescent, and chemiluminescent--are used to determine the sialidase (neuraminidase: NA) activity of influenza viruses. The fluorescent assay is cost-effective and applicable for many laboratories and is, therefore, commonly used for global monitoring of the NA inhibitor susceptibility of influenza viruses. Here, I describe, in detail, protocols for the fluorescence-based NA activity assay and the NA inhibition assay, which are used to determine the NA activity and NA inhibitor susceptibility, respectively, of influenza viruses.


Assuntos
Depressores do Sistema Nervoso Central , Orthomyxoviridae , Antivirais/farmacologia , Bioensaio , Corantes , Inibidores Enzimáticos/farmacologia , Neuraminidase
12.
Nat Microbiol ; 7(8): 1252-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35705860

RESUMO

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Humanos , Mesocricetus , RNA Viral
13.
Nature ; 607(7917): 119-127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576972

RESUMO

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Citidina/análogos & derivados , Combinação de Medicamentos , Hidroxilaminas , Indazóis , Lactamas , Leucina , Camundongos , Nitrilas , Prolina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Triazinas , Triazóis
15.
Res Sq ; 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35233565

RESUMO

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.

16.
Antiviral Res ; 200: 105281, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35292289

RESUMO

Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018-May 2019 and May 2019-May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018-2019 and 2019-2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018-2019 and 2019-2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018-2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Substituição de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas , Farmacorresistência Viral/genética , Endonucleases/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza B , Morfolinas , Neuraminidase/genética , Neuraminidase/uso terapêutico , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Piridonas , Triazinas
17.
Jpn J Infect Dis ; 75(4): 398-402, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34980710

RESUMO

The circulation of avian influenza A viruses in poultry is a public health concern due to the potential transmissibility and severity of these viral infections. Monitoring the susceptibility of these viruses to antivirals is important for developing measures to strengthen the level of preparedness against influenza pandemics. However, drug susceptibility information on these viruses is limited. Here, we determined the susceptibilities of avian influenza A(H5N1), A(H5N2), A(H5N8), A(H7N7), A(H7N9), A(H9N1), and A(H9N2) viruses isolated in Japan to the antivirals approved for use there: an M2 inhibitor (amantadine), neuraminidase inhibitors (oseltamivir, peramivir, zanamivir, and laninamivir) and RNA polymerase inhibitors (baloxavir and favipiravir). Genotypic methods that detect amino acid substitutions associated with antiviral resistance and phenotypic methods that assess phenotypic viral susceptibility to drugs have revealed that these avian influenza A viruses are susceptible to neuraminidase and RNA polymerase inhibitors. These results suggest that neuraminidase and RNA polymerase inhibitors currently approved in Japan could be a treatment option against influenza A virus infections in humans.


Assuntos
Farmacorresistência Viral , Influenza Aviária , Influenza Humana , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , RNA Polimerases Dirigidas por DNA , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H5N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N7/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Japão/epidemiologia , Neuraminidase/genética , Neuraminidase/metabolismo , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Aves Domésticas
19.
Antiviral Res ; 194: 105158, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363859

RESUMO

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Animais , Antivirais/efeitos adversos , Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Humanos , Influenza Humana/virologia , Conhecimento , Morfolinas/farmacologia , Neuraminidase/uso terapêutico , Oseltamivir/farmacologia , Piridonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Zanamivir/farmacologia
20.
J Infect Dis ; 224(10): 1735-1741, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-33837427

RESUMO

BACKGROUND: We aimed to detect influenza variants with reduced susceptibility to baloxavir marboxil (baloxavir) and oseltamivir and identify differences in the clinical course between children with and without these variants after antiviral treatment. METHODS: During the 2019-2020 influenza season, we enrolled children with confirmed influenza A (20 treated with baloxavir and 16 with oseltamivir). We analyzed patients' sequential viral RNA loads and infectious virus titers, the drug susceptibilities of clinical isolates, and amino acid substitutions in the viral polymerase acidic protein subunits or neuraminidase. We assessed patients' clinical information using questionnaires. RESULTS: All viral RNA loads and virus titers were significantly decreased after treatment, but we detected baloxavir-resistant and oseltamivir-resistant variants in 5 of 20 and 3 of 16 patients, respectively. The duration of fever was similar between patients with and without the variants, but infectious viral shedding lasted 3 days longer in patients with baloxavir-resistant variants. In addition, the duration to improvement of clinical symptoms was longer in these patients (75.0 vs 29.5 hours; P = .106). CONCLUSIONS: After antiviral treatment, the emergence of baloxavir-resistant variants may affect the patients' clinical course, but oseltamivir-resistant variants had no clinical impact.


Assuntos
Influenza Humana , Tiepinas , Antivirais/farmacologia , Antivirais/uso terapêutico , Criança , Dibenzotiepinas , Farmacorresistência Viral/genética , Humanos , Influenza Humana/tratamento farmacológico , Morfolinas , Neuraminidase , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Oxazinas/farmacologia , Subunidades Proteicas/farmacologia , Subunidades Proteicas/uso terapêutico , Piridinas/farmacologia , Piridonas/uso terapêutico , RNA Viral , Estações do Ano , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Triazinas/farmacologia , Triazinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...