Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8363, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589847

RESUMO

Artificial intelligence algorithms utilizing deep learning are helpful tools for diagnostic imaging. A deep learning-based automatic detection algorithm was developed for rib fractures on computed tomography (CT) images of high-energy trauma patients. In this study, the clinical effectiveness of this algorithm was evaluated. A total of 56 cases were retrospectively examined, including 46 rib fractures and 10 control cases from our hospital, between January and June 2019. Two radiologists annotated the fracture lesions (complete or incomplete) for each CT image, which is considered the "ground truth." Thereafter, the algorithm's diagnostic results for all cases were compared with the ground truth, and the sensitivity and number of false positive (FP) results per case were assessed. The radiologists identified 199 images with a fracture. The sensitivity of the algorithm was 89.8%, and the number of FPs per case was 2.5. After additional learning, the sensitivity increased to 93.5%, and the number of FPs was 1.9 per case. FP results were found in the trabecular bone with the appearance of fracture, vascular grooves, and artifacts. The sensitivity of the algorithm used in this study was sufficient to aid the rapid detection of rib fractures within the evaluated validation set of CT images.


Assuntos
Fraturas das Costelas , Algoritmos , Inteligência Artificial , Humanos , Estudos Retrospectivos , Fraturas das Costelas/diagnóstico por imagem , Tecnologia , Tomografia Computadorizada por Raios X/métodos
2.
Emerg Radiol ; 29(2): 317-328, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855002

RESUMO

PURPOSE: The evaluation of all ribs on thin-slice CT images is time consuming and it can be difficult to accurately assess the location and type of rib fracture in an emergency. The aim of our study was to develop and validate a convolutional neural network (CNN) algorithm for the detection of acute rib fractures on thoracic CT images and to investigate the effect of the CNN algorithm on radiologists' performance. METHODS: The dataset for development of a CNN consisted of 539 thoracic CT scans with 4906 acute rib fractures. A three-dimensional faster region-based CNN was trained and evaluated by using tenfold cross-validation. For an observer performance study to investigate the effect of CNN outputs on radiologists' performance, 30 thoracic CT scans (28 scans with 90 acute rib fractures and 2 without rib fractures) which were not included in the development dataset were used. Observer performance study involved eight radiologists who evaluated CT images first without and second with CNN outputs. The diagnostic performance was assessed by using figure of merit (FOM) values obtained from the jackknife free-response receiver operating characteristic (JAFROC) analysis. RESULTS: When radiologists used the CNN output for detection of rib fractures, the mean FOM value significantly increased for all readers (0.759 to 0.819, P = 0.0004) and for displaced (0.925 to 0.995, P = 0.0028) and non-displaced fractures (0.678 to 0.732, P = 0.0116). At all rib levels except for the 1st and 12th ribs, the radiologists' true-positive fraction of the detection became significantly increased by using the CNN outputs. CONCLUSION: The CNN specialized for the detection of acute rib fractures on CT images can improve the radiologists' diagnostic performance regardless of the type of fractures and reader's experience. Further studies are needed to clarify the usefulness of the CNN for the detection of acute rib fractures on CT images in actual clinical practice.


Assuntos
Fraturas das Costelas , Humanos , Redes Neurais de Computação , Radiologistas , Fraturas das Costelas/diagnóstico por imagem , Costelas , Tomografia Computadorizada por Raios X/métodos
4.
Neurol Med Chir (Tokyo) ; 61(11): 652-660, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526447

RESUMO

Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease with a high mortality rate and is known as a disease that is hard to diagnose because it may be overlooked by noncontrast computed tomography (NCCT) examinations that are most frequently used for diagnosis. To create a system preventing this oversight of SAH, we trained artificial intelligence (AI) with NCCT images obtained from 419 patients with nontraumatic SAH and 338 healthy subjects and created an AI system capable of diagnosing the presence and location of SAH. Then, we conducted experiments in which five neurosurgery specialists, five nonspecialists, and the AI system interpreted NCCT images obtained from 135 patients with SAH and 196 normal subjects. The AI system was capable of performing a diagnosis of SAH with equal accuracy to that of five neurosurgery specialists, and the accuracy was higher than that of nonspecialists. Furthermore, the diagnostic accuracy of four out of five nonspecialists improved by interpreting NCCT images using the diagnostic results of the AI system as a reference, and the number of oversight cases was significantly reduced by the support of the AI system. This is the first report demonstrating that an AI system improved the diagnostic accuracy of SAH by nonspecialists.


Assuntos
Aprendizado Profundo , Hemorragia Subaracnóidea , Inteligência Artificial , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Tomografia Computadorizada por Raios X
5.
Yeast ; 34(3): 129-137, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862261

RESUMO

Trichosporon asahii is a pathogenic basidiomycetous yeast. Individual strains of T. asahii have different colony morphologies. However, it is not clear whether cell surface phenotypes differ among the colony morphologies. Here we characterized the cell surface hydrophobicity and analysed the carbohydrate contents of the cell surface polysaccharides in T. asahii clinical isolates with various colony morphologies. Among the three distinctive colony morphologies obtained from one clinical isolate, the white-type morphology exhibited higher hydrophobicity. The hydrophobicity of heat-killed T. asahii cells was greatly reduced after periodate oxidation of the cell surface carbohydrates. Furthermore, the cell wall and extracellular polysaccharide components differed among the morphologies. Our results suggest that T. asahii cell surface hydrophobicity is affected by cell surface carbohydrate composition. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Trichosporon/fisiologia , Biofilmes , Carboidratos/análise , Adesão Celular , Membrana Celular/química , Membrana Celular/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos/análise , Trichosporon/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...