Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cureus ; 16(4): e57417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694683

RESUMO

Boron neutron capture therapy (BNCT) has predominantly been performed for brain tumors or head and neck cancers. Although BNCT is known to be applicable to breast cancer, it has only been performed in a few cases involving thoracic region irradiation with reactor-based BNCT systems. Thus, there are very few reports on the effects of BNCT on the thoracic region and no reports of BNCT for breast cancer with accelerator-based BNCT systems. This paper introduces the world's first clinical study employing an accelerator-based BNCT system targeting recurrent breast cancer after radiation therapy. We aim to assess the efficacy and safety of BNCT, focusing on the dose response in the thoracic region, especially concerning the potential for radiation pneumonitis. Preliminary findings from the first three cases indicate no evidence of radiation pneumonitis within three months post treatment. This study not only establishes a foundation for novel breast cancer treatment options but also contributes significantly to the field of BNCT in the thoracic region.

2.
Sci Rep ; 14(1): 11253, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755333

RESUMO

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Assuntos
Terapia por Captura de Nêutron de Boro , Lítio , Nêutrons , Terapia por Captura de Nêutron de Boro/métodos , Lítio/química , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
3.
Asian J Urol ; 11(2): 286-293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680582

RESUMO

Objectives: Hydrogel spacer (HS) was developed to reduce rectal toxicities caused by radiotherapy, but has been reported to cause major adverse events. Our institute has attempted to introduce a hyaluronic acid (HA) as an alternative spacer. This study aimed to compare rectal doses and geometric distributions between the HS and HA implantation in prostate cancer. Methods: HS and HA were inserted in 20 and 18 patients undergoing high-dose brachytherapy, respectively. The rectum spacer volumes injected were 10 mL and 22 mL, respectively. In the treatment planning system, 13.5 Gy was administered with common catheter positions. The rectal dose indices were assessed between the spacer groups for dosimetry evaluation. Distances between the prostate and rectum and configurations of the spacers were compared. Results: The mean doses irradiated to 0.1 and 2 mL of the rectum were 10.45 Gy and 6.71 Gy for HS, and 6.73 Gy and 4.90 Gy for HA (p<0.001). The mean minimum distances between the prostate and rectum were 1.23 cm and 1.79 cm for HS and HA, respectively (p<0.05). Geometrical configuration comparisons revealed that HA has a higher ability to expand the space than HS. Conclusion: The rectal dose reduction ability of HA is significantly greater than that of HS, suggesting its potential as a new spacer.

4.
Front Oncol ; 13: 1272507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901311

RESUMO

This study reports the first patient treatment for cutaneous malignant melanoma using a linear accelerator-based boron neutron capture therapy (BNCT) system. A single-center open-label phase I clinical trial had been conducted using the system since November 2019. A patient with a localized node-negative acral malignant melanoma and the largest diameter of the tumor ≤ 15 cm who refused primary surgery and chemotherapy was enrolled. After administering boronophenylalanine (BPA), a single treatment of BNCT with the maximum dose of 18 Gy-Eq delivered to the skin was performed. The safety and efficacy of the accelerator-based BNCT system for treating localized cutaneous malignant melanoma were evaluated. The first patient with cutaneous malignant melanoma in situ on the second finger of the left hand did not develop dose-limiting toxicity in the clinical trial. After BNCT, the treatment efficacy was gradually observed, and the patient achieved PR within 6 months and CR within 12 months. Moreover, during the follow-up period of 12 months after BNCT, the patient did not exhibit a recurrence without any treatment-related grade 2 or higher adverse events. Although grade 1 adverse events of dermatitis, dry skin, skin hyperpigmentation, edema, nausea, and aching pain were noted in the patient, those adverse events were relieved without any treatment. This case report shows that the accelerator-based BNCT may become a promising treatment modality for cutaneous malignant melanoma. We expect further clinical trials to reveal the efficacy and safety of the accelerator-based BNCT for cutaneous malignant melanoma.

5.
J Radiat Res ; 64(4): 661-667, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37295954

RESUMO

This study aimed to quantify the relative biological effectiveness (RBE) for epithermal neutron beam contaminated with fast neutrons in the accelerator-based boron neutron capture therapy (BNCT) system coupled to a solid-state lithium target. The experiments were performed in National Cancer Center Hospital (NCCH), Tokyo, Japan. Neutron irradiation with the system provided by Cancer Intelligence Care Systems (CICS), Inc. was performed. X-ray irradiation, which was assigned as the reference group, was also performed using a medical linear accelerator (LINAC) equipped in NCCH. The four cell lines (SAS, SCCVII, U87-MG and NB1RGB) were utilized to quantify RBE value for the neutron beam. Before both of those irradiations, all cells were collected and dispensed into vials. The doses of 10% cell surviving fraction (SF) (D10) were calculated by LQ model fitting. All cell experiments were conducted in triplicate at least. Because the system provides not only neutrons, but gamma-rays, the contribution from the gamma-rays to the survival fraction were subtracted in this study. D10 value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was 4.26, 4.08, 5.81 and 2.72 Gy, respectively, while that acquired by the X-ray irradiation was 6.34, 7.21, 7.12 and 5.49 Gy, respectively. Comparison of both of the D10 values, RBE value of SAS, SCCVII, U87-MG and NB1RGB for the neutron beam was calculated as 1.7, 2.2, 1.3 and 2.5, respectively, and the average RBE value was 1.9. This study investigated RBE of the epithermal neutron beam contaminated with fast neutrons in the accelerator-based BNCT system coupled to a solid-state lithium target.


Assuntos
Terapia por Captura de Nêutron de Boro , Nêutrons Rápidos , Lítio , Nêutrons , Aceleradores de Partículas , Eficiência Biológica Relativa
6.
J Appl Clin Med Phys ; 24(5): e13915, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934441

RESUMO

PURPOSE: We measure the dose distribution of gated delivery for different target motions and estimate the gating latency in a magnetic resonance-guided radiotherapy (MRgRT) system. METHOD: The dose distribution accuracy of the gated MRgRT system (MRIdian, Viewray) was investigated using an in-house-developed phantom that was compatible with the magnetic field and gating method. This phantom contains a simulated tumor and a radiochromic film (EBT3, Ashland, Inc.). To investigate the effect of the number of beam switching and target velocity on the dose distribution, two types of target motions were applied. One is that the target was periodically moved at a constant velocity of 5 mm/s with different pause times (0, 1, 3, 10, and 20 s) between the motions. During different pause times, different numbers of beams were switched on/off. The other one is that the target was moved at velocities of 3, 5, 8, and 10 mm/s without any pause (i.e., continuous motion). The gated method was applied to these motions at MRIdian, and the dose distributions in each condition were measured using films. To investigate the relation between target motion and dose distribution in the gating method, we compared the results of the gamma analysis of the calculated and measured dose distributions. Moreover, we analytically estimated the gating latencies from the dose distributions measured using films and the gamma analysis results. RESULTS: The gamma pass rate linearly decreased with increasing beam switching and target velocity. The overall gating latencies of beam-hold and beam-on were 0.51 ± 0.17 and 0.35 ± 0.05 s, respectively. CONCLUSIONS: Film measurements highlighted the factors affecting the treatment accuracy of the gated MRgRT system. Our analytical approach, employing gamma analysis on films, can be used to estimate the overall latency of the gated MRgRT system.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Humanos , Movimento (Física) , Espectroscopia de Ressonância Magnética , Dosagem Radioterapêutica , Imagens de Fantasmas
7.
Med Phys ; 50(1): 424-439, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36412161

RESUMO

BACKGROUND: Boron Neutron Capture Therapy (BNCT) has recently been used in clinical oncology thanks to recent developments of accelerator-based BNCT systems. Although there are some specific processes for BNCT, they have not yet been discussed in detail. PURPOSE: The aim of this study is to provide comprehensive data on the risk of accelerator-based BNCT system to institutions planning to implement an accelerator-based BNCT system. METHODS: In this study, failure mode and effects analysis (FMEA) was performed based on a treatment process map prepared for the accelerator-based BNCT system. A multidisciplinary team consisting of a medical doctor (MD), a registered nurse (RN), two medical physicists (MP), and three radiologic technologists (RT) identified the failure modes (FMs). Occurrence (O), severity (S), and detectability (D) were scored on a scale of 10, respectively. For each failure mode (FM), risk priority number (RPN) was calculated by multiplying the values of O, S, and D, and it was then categorized as high risk, very high risk, and other. Additionally, FMs were statistically compared in terms of countermeasures, associated occupations, and whether or not they were the patient-derived. RESULTS: The identified FMs for BNCT were 165 in which 30 and 17 FMs were classified as high risk and very high risk, respectively. Additionally, 71 FMs were accelerator-based BNCT-specific FMs in which 18 and 5 FMs were classified as high risk and very high risk, respectively. The FMs for which countermeasures were "Education" or "Confirmation" were statistically significantly higher for S than the others (p = 0.019). As the number of BNCT facilities is expected to increase, staff education is even more important. Comparing patient-derived and other FMs, O tended to be higher in patient-derived FMs. This could be because the non-patient-derived FMs included events that could be controlled by software, whereas the patient-derived FMs were impossible to prevent and might also depend on the patient's condition. Alternatively, there were non-patient-derived FMs with higher D, which were difficult to detect mechanically and were classified as more than high risk. In O, significantly higher values (p = 0.096) were found for FMs from MD and RN associated with much patient intervention compared to FMs from MP and RT less patient intervention. Comparing conventional radiotherapy and accelerator-based BNCT, although there were events with comparable risk in same FMs, there were also events with different risk in same FMs. They could be related to differences in the physical characteristics of the two modalities. CONCLUSIONS: This study is the first report for conducting a risk analysis for BNCT using FMEA. Thus, this study provides comprehensive data needed for quality assurance/quality control (QA/QC) in the treatment process for facilities considering the implementation of accelerator-based BNCT in the future. Because many BNCT-specific risks were discussed, it is important to understand the characteristics of BNCT and to take adequate measures in advance. If the effects of all FMs and countermeasures are discussed by multidisciplinary team, it will be possible to take countermeasures against individual FMs from many perspectives and provide BNCT more safely and effectively.


Assuntos
Terapia por Captura de Nêutron de Boro , Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Humanos , Medição de Risco , Controle de Qualidade
8.
J Appl Clin Med Phys ; 24(4): e13865, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36573258

RESUMO

BACKGROUND: The setup of lung shield (LS) in total body irradiation (TBI) with the computed radiography (CR) system is a time-consuming task and has not been quantitatively evaluated. The TBI mobile imager (TBI-MI) can solve this problem through real-time monitoring. Therefore, this study aimed to perform commissioning and performance evaluation of TBI-MI to promote its use in clinical practice. METHODS: The source-axis distance in TBI treatment, TBI-MI (CNERGY TBI, Cablon Medical B.V.), and the LS position were set to 400, 450, and 358 cm, respectively. The evaluation items were as follows: accuracy of image scaling and measured displacement error of LS, image quality (linearity, signal-to-noise ratio, and modulation transfer function) using an EPID QC phantom, optimal thresholding to detect intra-fractional motion in the alert function, and the scatter radiation dose from TBI-MI. RESULTS: The accuracy of image scaling and the difference in measured displacement of the LS was <4 mm in any displacements and directions. The image quality of TBI imager was slightly inferior to the CR image but was visually acceptable in clinical practice. The signal-to-noise ratio was improved at high dose rate. The optimal thresholding value to detect a 10-mm body displacement was determined to be approximately 5.0%. The maximum fraction of scattering radiation to irradiated dose was 1.7% at patient surface. CONCLUSION: MI-TBI can quantitatively evaluate LS displacement with acceptable image quality. Furthermore, real-time monitoring with alert function to detect intrafraction patient displacement can contribute to safe TBI treatment.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Irradiação Corporal Total , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
9.
J Radiat Res ; 64(1): 186-194, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36316958

RESUMO

This study aimed to clarify the differences in radiotherapy dose characteristics and delivery efficiency between the supine and prone positions in patients with prostate cancer using the CyberKnife. The planning computed tomography (CT) and delineations of the prone position were obtained by rotating the supine CT images with delineations of 180° using image processing software. The optimization parameters for planning target volume (PTV) and organs at risk (OARs) were based on the prone position. The optimization parameters determined for the prone position were applied to the supine position for optimization and dose calculation. The dosimetric characteristics of the PTV and OARs, and delivery efficiency were compared between the two different patient positions. The plans in the prone position resulted in better PTV conformity index (nCI), rectum V90%, V80%, V75%, V50% and bladder V50%. A significant difference was observed in treatment time and depth along the central axis (dCAX) between the two plans. The mean treatment time per fraction and dCAX for the supine and prone positions were 20.9 ± 1.7 min versus 19.8 ± 1.3 min (P = 0.019) and 151.1 ± 33.6 mm versus 233.2 ± 8.8 mm (P < 0.001), respectively. In this study the prone position was found to improve dosimetric characteristics and delivery efficiency compared with the supine position during prostate cancer treatment with the CyberKnife.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Radioterapia Conformacional/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Decúbito Dorsal , Dosagem Radioterapêutica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Órgãos em Risco , Decúbito Ventral
10.
EJNMMI Phys ; 9(1): 89, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536190

RESUMO

BACKGROUND: 18F-FDG PET is often utilized to determine BNCT selection due to the limited availability of 18F-BPA PET, which is performed by synthesizing 18F into the boron drug used for BNCT, although the uptake mechanisms between those are different. Additionally, only a few non-spatial point parameters, such as maximum SUV (SUVmax), have reported a correlation between those in previous studies. This study aimed to investigate the spatial accumulation pattern between those PET images in tumors, which would be expected to either show higher uptake on 18F-BPA PET or be utilized in clinical, to verify whether 18F-FDG PET could be used as a selection indicator for BNCT. METHODS: A total of 27 patients with 30 lesions (11 squamous cell carcinoma, 9 melanoma, and 10 rhabdomyosarcoma) who received 18F-FDG and 18F-BPA PET within 2 weeks were enrolled in this study. The ratio of metabolic tumor volumes (MTVs) to GTV, histogram indices (skewness/kurtosis), and the correlation of total lesion activity (TLA) and non-spatial point parameters (SUVmax, SUVpeak, SUVmin, maximum tumor-to-normal tissue ratio (Tmax/N), and Tmin/N) were evaluated. After local rigid registration between those images, distances of locations at SUVmax and the center of mass with MTVs on each image and similarity indices were also assessed along its coordinate. RESULTS: In addition to SUVmax, SUVpeak, and Tmax/N, significant correlations were found in TLA. The mean distance in SUVmax was [Formula: see text] and significantly longer than that in the center of mass with MTVs. The ratio of MTVs to GTV, skewness, and kurtosis were not significantly different. However, the similarities of MTVs were considerably low. The similarity indices of Dice similarity coefficient, Jaccard coefficient, and mean distance to agreement for MTV40 were [Formula: see text], [Formula: see text], and [Formula: see text] cm, respectively. Furthermore, it was worse in MTV50. In addition, spatial accumulation patterns varied in cancer types. CONCLUSIONS: Spatial accumulation patterns in tumors showed low similarity between 18F-FDG and 18F-BPA PET, although the various non-spatial point parameters were correlated. In addition, the spatial accumulation patterns were considerably different in cancer types. Therefore, the selection for BNCT using 18F-FDG PET should be compared carefully with using 18F-FBPA PET.

11.
J Radiat Res ; 63(6): 879-883, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36149017

RESUMO

Sinonasal undifferentiated carcinoma (SNUC) is a highly aggressive and uncommon neoplasm that arises from the mucosa of the nasal cavity or paranasal sinuses. The multidisciplinary approach that includes surgery, radiation therapy (RT), and chemotherapy has been proven to improve survival rates. However, there is no established evidence for the efficacy of further (boost) irradiation following definitive RT in SNUC patients with residual primary tumor. We describe a successful case of a patient with SNUC who had an uncontrolled primary tumor following induction chemotherapy and radical concurrent chemoradiotherapy (CCRT) and underwent a high-dose-rate interstitial brachytherapy (HDR-ISBT) boost. A 75-year-old Japanese woman with unresectable locally advanced SNUC (LA-SNUC) received induction chemotherapy followed by radical CCRT. However, because the residual primary tumor was evident after planned external beam RT, she underwent an HDR-ISBT boost, and the tumor decreased significantly. A complete response (the Response Evaluation Criteria in Solid Tumors, ver. 1.1) was achieved 2 months after brachytherapy, and the patient has been disease-free for 2 years following treatment initiation. In conclusion, an HDR-ISBT boost can be a safe and effective treatment option in patients with residual and inoperable LA-SNUC in the maxillary sinus after initial RT.


Assuntos
Neoplasias , Humanos , Idoso
12.
Phys Imaging Radiat Oncol ; 23: 1-7, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35712526

RESUMO

Background and purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART) is a new technology of radiotherapy and requires a new quality control program in many aspects. This study aimed to gain a deeper understanding of risks in online MRgART through the application of failure mode and effect analysis (FMEA) for more enhanced and effective quality assurance (QA) programs. Materials and methods: We present an FMEA conducted by a multidisciplinary team with more than two years of experience. A process map describing the whole process of online MRgART was developed and potential failure modes were identified. High-risk failure modes and their potential causes and corrective measures were also identified. Failure modes were classified into three categories, MRgRT, online ART, and conventional RT, to investigate their features. A comparison with previous studies was also conducted to gain a general perspective. Results: In total, 153 failure modes and 49 high risks were identified. Among all failure modes, 51, 63, and 66 were related to MRgRT, online ART, and conventional RT, respectively. The hazardous processes were structure segmentation, treatment planning, and treatment beam delivery. Lists of failure modes identified in this study and previous studies were presented. Based on the results, characteristics and general aspects of the risks were discussed. Conclusion: Exploring the results of the FMEA enhanced our understanding of risk characteristics to improve QA program of online MRgART.

13.
Clin Transl Radiat Oncol ; 33: 128-133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252597

RESUMO

PURPOSE: This study reports the first-in-human use of a linear accelerator-based boron neutron capture therapy (BNCT) system and the first treatment of patients with scalp-angiosarcoma with accelerator-based BNCT. PATIENTS AND METHODS: A single-center open-label phase I clinical trial has been conducted using the system since November 2019. Patients with a localized node-negative scalp-angiosarcoma along with the largest diameter of the tumor ≤ 15 cm who refused primary surgery and chemotherapy were enrolled. After administration of boronophenylalanine (BPA), a single treatment of BNCT with the maximum dose delivered to the skin being 12 Gy-Eq was performed. The safety and effectiveness of accelerator-based BNCT therapy for localized scalp angiosarcoma were evaluated. RESULTS: Scalp-angiosarcoma of the two patients did not develop the dose-limiting toxicity in the clinical trial. They reached CR within half a year and did not exhibit in-field failure 20 months after BNCT without any severe treatment-related adverse events. Although a grade 3 adverse event of an asymptomatic but increased serum amylase level was noted in both patients, it relieved without any treatment. Additionally, no severe acute dermatitis was observed for both patients, which is typically seen with conventional primary radiotherapy. CONCLUSIONS: It was suggested that BNCT would be a promising treatment modality for scalp-angiosarcoma, which is difficult to treat.

14.
Med Phys ; 49(7): 4804-4811, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35279854

RESUMO

PURPOSE: To assess the accuracy of the movement of a brachytherapy source using a high-speed camera for evaluating source position, dwell time, and transit dose. METHODS: A high-speed camera was used to record the source position of an Ir-192 source relative to a ruler within a custom positioning jig in a remote afterloading system. The analyzed frames can be used to assess dwell positions and times. Treatment plans had multiple dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in 2.5- and 5-mm step sizes. Images were acquired at a rate of 146 frames/s. Acquired images were processed to automatically track the actual source using the correlation between a template image and each frame. The brachytherapy dose calculation formalism (AAPM TG43-U1) was applied to each frame to evaluate the transit dose contribution to the total dose. RESULTS: The differences in measured source positions from the nominal for dwell times equal to 0.1, 0.5, 1.0, and 2.0 s in treatment plans were approximately ≤1 mm. The corresponding differences in measured dwell times from the nominal values at 5 mm steps were -15, -9, -5, and 5 ms, respectively. The source velocities at 5 mm steps were approximately 393 mm/s. The dose differences at 5 mm from the source movement with and without the transit dose for these dwell times were 38%, 7%, 3%, and 2%, respectively. CONCLUSIONS: Recording a brachytherapy source using a high-speed camera allowed the evaluation of positional and dwell time accuracies as well as dosimetry assessments, such as the transit dose, based on the application of AAPM TG-43U1.


Assuntos
Braquiterapia , Braquiterapia/métodos , Radiometria , Dosagem Radioterapêutica
15.
Radiat Oncol ; 17(1): 16, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073956

RESUMO

BACKGROUND: The 106-Ruthenium contact plaque applicator is utilized for the treatment of intraocular tumor within a thickness of less than 6 mm. If anything obstructs the placement of the plaque applicator, the treatment is generally difficult because the applicator has to be temporarily located just on the opposite side of the retinal tumor. Furthermore, the plaque applicator edge of approximately 1 mm does not contain 106Ru, estimating the delivered radiation dose for eccentric tumor is challenging because the lateral dose profile is inadequately provided by the manufacture's certification. This study aims to simulate tumor coverage of the tilted applicator placement for treating an infant with juxtapapillary retinoblastoma and to achieve the effective treatment. CASE PRESENTATION: We present an infant with retinoblastoma whose tumor involved macular and was invading just temporal side of the optic disc. Additionally, posterior staphyloma was induced by a series of previous treatments, making it more difficult to treat the standard plaque placement. Thus, the applicator type of CCA was intentionally tilted to the eyeball and the distance between the posterior edge of the applicator and the eyeball had to be then equal to or more than 2 mm based on the dose distribution of the applicator calculated using Monte Carlo simulation to minimize damage to surrounding tissues while covering the tumor. It was then comparable to the certification and previous reports. Based on the acquired dose distribution, the optimal placement of the applicator was derived from varying the distance between the applicator's edge and the eyeball, and the distance was then determined to be 2 mm. In this case, the minimum dose rate in the tumor was 25.5 mGy/min, and the time required to deliver the prescribed dose was 26.2 h. Therefore, the tilted 106Ru plaque applicator placement could deliver the required dose for the treatment. The physical examination revealed no active tumor as a result of the treatment. CONCLUSIONS: Optimizing the placement of the 106Ru plaque applicator, it was possible to guarantee that the prescribed dose will be delivered to the tumor even if the standard placement is not possible for the juxtapapillary tumor.


Assuntos
Braquiterapia/métodos , Método de Monte Carlo , Neoplasias da Retina/radioterapia , Retinoblastoma/radioterapia , Pré-Escolar , Humanos , Masculino
16.
J Radiat Res ; 63(1): 51-54, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718685

RESUMO

Mycosis fungoides (MF) is a common, low-grade non-Hodgkin's lymphoma of skin-homing T lymphocytes that can be treated via skin-directed radiotherapy. Our institution has implemented total skin electron therapy (TSET) with a 4.3 m source-to-surface distance (SSD) and 6 MeV electron beams with a beam spoiler. A 35-year-old male undergoing TSET desired to avoid radiotherapy-induced hair loss and temporary infertility; therefore, leakage dose to scalp and testicles was reduced with a special radiation shield composed of stacked lead sheets. The shields for the scalp and scrotal were of 3 mm and 6 mm, respectively. To assess leakage doses, a radiophotoluminescence glass dosimeter (RPLD) was placed at every fraction. The difference dose between the measured and prescribed dose at the calibration point was 2%. The top of the head and scrotal surface exhibited 18 cGy and 10 cGy, respectively. Thus, the dose to the scrotal surface was not beyond the testicular tolerance dose of 20 cGy. Results of semen analysis two months postradiotherapy were normal. There was no hair loss during or after radiation therapy. Therefore, the RPLD is a useful in vivo dosimeter that provides technical information on radiation shielding to allow for completion of TSET without hair loss or temporary infertility.


Assuntos
Dosimetria in Vivo , Dosímetros de Radiação , Adulto , Elétrons , Humanos , Masculino , Couro Cabeludo , Testículo
17.
Phys Med ; 91: 105-116, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34742097

RESUMO

PURPOSE: To increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT). METHODS: TI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose. RESULTS: HI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses. CONCLUSION: Our proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.


Assuntos
Hemangiossarcoma , Radioterapia de Intensidade Modulada , Hemangiossarcoma/radioterapia , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Couro Cabeludo
18.
Radiat Oncol ; 16(1): 175, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503533

RESUMO

BACKGROUND: Contour delineation, a crucial process in radiation oncology, is time-consuming and inaccurate due to inter-observer variation has been a critical issue in this process. An atlas-based automatic segmentation was developed to improve the delineation efficiency and reduce inter-observer variation. Additionally, automated segmentation using artificial intelligence (AI) has recently become available. In this study, auto-segmentations by atlas- and AI-based models for Organs at Risk (OAR) in patients with prostate and head and neck cancer were performed and delineation accuracies were evaluated. METHODS: Twenty-one patients with prostate cancer and 30 patients with head and neck cancer were evaluated. MIM Maestro was used to apply the atlas-based segmentation. MIM Contour ProtégéAI was used to apply the AI-based segmentation. Three similarity indices, the Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean distance to agreement (MDA), were evaluated and compared with manual delineations. In addition, radiation oncologists visually evaluated the delineation accuracies. RESULTS: Among patients with prostate cancer, the AI-based model demonstrated higher accuracy than the atlas-based on DSC, HD, and MDA for the bladder and rectum. Upon visual evaluation, some errors were observed in the atlas-based delineations when the boundary between the small bowel or the seminal vesicle and the bladder was unclear. For patients with head and neck cancer, no significant differences were observed between the two models for almost all OARs, except small delineations such as the optic chiasm and optic nerve. The DSC tended to be lower when the HD and the MDA were smaller in small volume delineations. CONCLUSIONS: In terms of efficiency, the processing time for head and neck cancers was much shorter than manual delineation. While quantitative evaluation with AI-based segmentation was significantly more accurate than atlas-based for prostate cancer, there was no significant difference for head and neck cancer. According to the results of visual evaluation, less necessity of manual correction in AI-based segmentation indicates that the segmentation efficiency of AI-based model is higher than that of atlas-based model. The effectiveness of the AI-based model can be expected to improve the segmentation efficiency and to significantly shorten the delineation time.


Assuntos
Inteligência Artificial , Computação em Nuvem , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Atlas como Assunto , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Masculino , Variações Dependentes do Observador , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem
19.
Med Phys ; 48(11): 7541-7551, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510486

RESUMO

PURPOSE: In this study, we report on our proposed phantom based on the new end-to-end (E2E) methodology and its results. In addition, we verify whether the proposed phantom can replace conventional phantoms. METHODS: The hexagonal-shaped newly designed phantom has pockets on each side for a film dosimeter of size 80 × 90 mm2 , which is easily removable, considering the 60 Co penumbra. The new phantom comprises water, shell, and auxiliary shell phantoms. The shell and auxiliary shell materials are Solid Water HE. A mock tumor (aluminum oxide) was attached by a single prop in the water phantom and placed at the center of the new phantom. The results of a conventional E2E test were compared with those of the novel E2E test using the newly designed phantom. The irradiated film dosimeter in the novel E2E test was scanned in a flatbed scanner and analyzed using an in-house software developed with MATLAB. The irradiated field center, laser center, and mock tumor center were calculated. In the novel image-matching E2E (IM-E2E) test, image matching is performed by aligning the laser center with ruled lines. In the novel irradiation-field E2E (IF-E2E) test, the displacement of the irradiation-field center was defined as its distance from the laser center. In the composite E2E test, the overall displacement, which included the accuracy of the irradiated field and image matching, was defined as the distance between the irradiated field center and mock tumor center. In addition, using the newly designed phantom, the overall irradiation accuracy of the machine was evaluated by calculating the three-dimensional (3D) center of the irradiated field, phantom, and laser. The composite E2E test could be performed using the newly designed phantom only. RESULTS: In the IM-E2E test, the results of the conventional and novel IM-E2E tests were significantly different in each direction (left-right direction: p-value < < 0.05, anterior-posterior direction: p-value = 0.002, and superior-inferior direction: p-value = 0.002). The displacement directions were the same in both the conventional and novel IM-E2E tests. In the analysis of the IF-E2E test, no significant difference was evident between the results in each direction. Moreover, the displacement directions were the same in the conventional and novel IF-E2E tests, except for the left-right lateral direction of head three. In addition, the 3D analysis results of the novel IF-E2E test were less than 1 mm in all directions. In the analysis of the composite E2E test, the maximum displacement was 1.4 mm in all directions. In addition, almost all results of 3D analysis for the composite E2E test were less than 1 mm in all directions. CONCLUSION: The newly designed E2E phantom simplifies the E2E test for MRIdian, and is a possible alternative to the conventional E2E test. Furthermore, we can perform the previously unfeasible composite E2E tests that include the entire treatment process.


Assuntos
Neoplasias , Radioterapia Guiada por Imagem , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Software
20.
Sci Rep ; 11(1): 8090, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850253

RESUMO

An accelerator-based boron neutron capture therapy (BNCT) system employing a solid-state Li target can achieve sufficient neutron flux for treatment although the neutron flux is reduced over the lifetime of its target. In this study, the reduction was examined in the five targets, and a model was then established to represent the neutron flux. In each target, a reduction in neutron flux was observed based on the integrated proton charge on the target, and its reduction reached 28% after the integrated proton charge of 2.52 × 106 mC was delivered to the target in the system. The calculated neutron flux acquired by the model was compared to the measured neutron flux based on an integrated proton charge, and the mean discrepancies were less than 0.1% in all the targets investigated. These discrepancies were comparable among the five targets examined. Thus, the reduction of the neutron flux can be represented by the model. Additionally, by adequately revising the model, it may be applicable to other BNCT systems employing a Li target, thus furthering research in this direction. Therefore, the established model will play an important role in the accelerator-based BNCT system with a solid-state Li target in controlling neutron delivery and understanding the neutron output characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...