Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Eur Radiol ; 34(2): 1065-1076, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37580601

RESUMO

OBJECTIVE: The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRISingle and UTE-MRIDual) and thin-section CT for stage IA lung cancer patients. METHODS: Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRISingle, and UTE-MRIDual, surgical treatment and pathological examinations were included in this retrospective study. The largest dimension (Dlong), solid portion (solid Dlong), and consolidation/tumor (C/T) ratio of each nodule were assessed. Two-tailed Student's t-tests were performed to compare all indexes obtained with each method between non- and minimally invasive adenocarcinomas and other lung cancers. Receiver operating characteristic (ROC)-based positive tests were performed to determine all feasible threshold values for distinguishing non- or minimally invasive adenocarcinoma (MIA) from other lung cancers. Sensitivity, specificity, and accuracy were then compared by means of McNemar's test. RESULTS: Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid Dlong for UTE-MRIDual2nd echo and CTMediastinal were significantly higher than those of solid Dlong for UTE-MRISingle and UTE-MRIDual1st echo and all C/T ratios except CTMediastinal (p < 0.05). Moreover, the specificities and accuracies of solid Dlong and C/T ratio were significantly higher than those of Dlong for each method (p < 0.05). CONCLUSION: Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. CLINICAL RELEVANCE STATEMENT: Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. KEY POINTS: • Correlations were excellent for pathologically examined nodules with the largest dimensions (Dlong) and a solid component (solid Dlong) for all indexes (0.95 ≤ r ≤ 0.99, p < 0.0001). • Pathologically examined Dlong and solid Dlong obtained with all methods showed significant differences between non- and minimally invasive adenocarcinomas and other lung cancers (p < 0.0001). • Solid tumor components are most accurately measured by UTE-MRIDual2nd echo and CTMediastinal, whereas the ground-glass component is imaged by UTE-MRIDual1st echo and CTlung with high accuracy. UTE-MRIDual predicts tumor invasiveness with 100% sensitivity and 87.5% specificity at a C/T threshold of 0.5.


Assuntos
Adenocarcinoma , Pneumopatias , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Pulmão/patologia , Adenocarcinoma/patologia , Imageamento por Ressonância Magnética/métodos
2.
Invest Radiol ; 59(1): 38-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707840

RESUMO

ABSTRACT: Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.


Assuntos
Pneumopatias , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Tórax , Espectroscopia de Ressonância Magnética
3.
Magn Reson Med Sci ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661425

RESUMO

PURPOSE: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients. METHODS: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test. RESULTS: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05). CONCLUSION: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.

4.
Diagnostics (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568881

RESUMO

An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.

5.
Jpn J Radiol ; 41(12): 1373-1388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37498483

RESUMO

PURPOSE: Deep learning reconstruction (DLR) has been introduced by major vendors, tested for CT examinations of a variety of organs, and compared with other reconstruction methods. The purpose of this study was to compare the capabilities of DLR for image quality improvement and lung texture evaluation with those of hybrid-type iterative reconstruction (IR) for standard-, reduced- and ultra-low-dose CTs (SDCT, RDCT and ULDCT) obtained with high-definition CT (HDCT) and reconstructed at 0.25-mm, 0.5-mm and 1-mm section thicknesses with 512 × 512 or 1024 × 1024 matrixes for patients with various pulmonary diseases. MATERIALS AND METHODS: Forty age-, gender- and body mass index-matched patients with various pulmonary diseases underwent SDCT (CT dose index volume : mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT (CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy) at a HDCT. All CT data set were then reconstructed with 512 × 512 or 1024 × 1024 matrixes by means of hybrid-type IR and DLR. SNR of lung parenchyma and probabilities of all lung textures were assessed for each CT data set. SNR and detection performance of each lung texture reconstructed with DLR and hybrid-type IR were then compared by means of paired t tests and ROC analyses for all CT data at each section thickness. RESULTS: Data for each radiation dose showed DLR attained significantly higher SNR than hybrid-type IR for each of the CT data (p < 0.0001). On assessments of all findings except consolidation and nodules or masses, areas under the curve (AUCs) for ULDCT with hybrid-type IR for each section thickness (0.91 ≤ AUC ≤ 0.97) were significantly smaller than those with DLR (0.97 ≤ AUC ≤ 1, p < 0.05) and the standard protocol (0.98 ≤ AUC ≤ 1, p < 0.05). CONCLUSION: DLR is potentially more effective for image quality improvement and lung texture evaluation than hybrid-type IR on all radiation dose CTs obtained at HDCT and reconstructed with each section thickness with both matrixes for patients with a variety of pulmonary diseases.


Assuntos
Aprendizado Profundo , Pneumopatias , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos
6.
Eur J Radiol ; 166: 110969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454556

RESUMO

PURPOSE: To compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. MATERIALS AND METHODS: A chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. RESULTS: At any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). CONCLUSION: The Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.


Assuntos
Cobre , Prata , Humanos , Raios X , Redução da Medicação , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos
7.
Eur J Radiol ; 162: 110764, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905716

RESUMO

PURPOSE: The purpose of this study was to determine the influenceof reverse encoding distortion correction (RDC) on ADC measurement and its efficacy for improving image quality and diagnostic performance for differentiating malignant from benign prostatic areas on prostatic DWI. METHODS: Forty suspected prostatic cancer patients underwent DWI with or without RDC (i.e. RDC DWI or DWI) using a 3 T MR system as well as pathological examinations. The pathological examination results indicated 86 areas were malignant while 86 out of 394 areas were computationally selected as benign. SNR for benign areas and muscle and ADCs for malignant and benign areas were determined by ROI measurements on each DWI. Moreover, overall image quality was assessed with a 5-point visual scoring system on each DWI. Paired t-test or Wilcoxon's signed rank test was performed to compare SNR and overall image quality for DWIs. ROC analysis was then used to compare the diagnostic performance, and sensitivity (SE), specificity (SP) and accuracy (AC) of ADC were compared between two DWI by means of McNemar's test. RESULTS: SNR and overall image quality of RDC DWI showed significant improvements when compared with those of DWI (p < 0.05). Areas under the curve (AUC), SP and AC of DWI RDC DWI (AUC: 0.85, SP: 72.1%, AC: 79.1%) were significantly better than those of DWI (AUC: 0.79, p = 0.008; SP: 64%, p = 0.02; AC: 74.4%, p = 0.008). CONCLUSION: RDC technique has the potential to improve image quality and ability to differentiate malignant from benign prostatic areas on DWIs of suspected prostatic cancer patients.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Sensibilidade e Especificidade , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética/métodos , Curva ROC , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
8.
J Magn Reson Imaging ; 58(1): 174-186, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971493

RESUMO

BACKGROUND: Amide proton transfer (APT) weighted chemical exchange saturation transfer CEST (APTw/CEST) magnetic resonance imaging (MRI) has been suggested as having the potential for assessing the therapeutic effect of brain tumors or rectal cancer. Moreover, diffusion-weighted imaging (DWI) and positron emission tomography fused with computed tomography by means of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG-PET/CT) have been suggested as useful in same setting. PURPOSE: To compare the capability of APTw/CEST imaging, DWI, and FDG-PET/CT for predicting therapeutic effect of chemoradiotherapy (CRT) on stage III non-small cell lung cancer (NSCLC) patients. STUDY TYPE: Prospective. POPULATION: Eighty-four consecutive patients with Stage III NSCLC, 45 men (age range, 62-75 years; mean age, 71 years) and 39 women (age range, 57-75 years; mean age, 70 years). All patients were then divided into two groups (Response Evaluation Criteria in Solid Tumors [RECIST] responders, consisting of the complete response and partial response groups, and RECIST non-responders, consisting of the stable disease and progressive disease groups). FIELD STRENGTH/SEQUENCE: 3 T, echo planar imaging or fast advanced spin-echo (FASE) sequences for DWI and 2D half Fourier FASE sequences with magnetization transfer pulses for CEST imaging. ASSESSMENT: Magnetization transfer ratio asymmetry (MTRasym ) at 3.5 ppm, apparent diffusion coefficient (ADC), and maximum standard uptake value (SUVmax, ) on PET/CT were assessed by means of region of interest (ROI) measurements at primary tumor. STATISTICAL TESTS: Kaplan-Meier method followed by log-rank test and Cox proportional hazards regression analysis with multivariate analysis. A P value <0.05 was considered statistically significant. RESULTS: Progression-free survival (PFS) and overall survival (OS) had significant difference between two groups. MTRasym at 3.5 ppm (hazard ratio [HR] = 0.70) and SUVmax (HR = 1.41) were identified as significant predictors for PFS. Tumor staging (HR = 0.57) was also significant predictors for OS. DATA CONCLUSION: APTw/CEST imaging showed potential performance as DWI and FDG-PET/CT for predicting the therapeutic effect of CRT on stage III NSCLC patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Fluordesoxiglucose F18 , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Quimiorradioterapia , Compostos Radiofarmacêuticos
9.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765907

RESUMO

Since the Radiology Diagnostic Oncology Group (RDOG) report had been published in 1991, magnetic resonance (MR) imaging had limited clinical availability for thoracic malignancy, as well as pulmonary diseases. However, technical advancements in MR systems, such as sequence and reconstruction methods, and adjustments in the clinical protocol for gadolinium contrast media administration have provided fruitful results and validated the utility of MR imaging (MRI) for lung cancer evaluations. These techniques include: (1) contrast-enhanced MR angiography for T-factor evaluation, (2) short-time inversion recovery turbo spin-echo sequences as well as diffusion-weighted imaging (DWI) for N-factor assessment, and (3) whole-body MRI with and without DWI and with positron emission tomography fused with MRI for M-factor or TNM stage evaluation as well as for postoperative recurrence assessment of lung cancer or other thoracic tumors using 1.5 tesla (T) or 3T systems. According to these fruitful results, the Fleischner Society has changed its position to approve of MRI for lung or thoracic diseases. The purpose of this review is to analyze recent advances in lung MRI with a particular focus on lung cancer evaluation, clinical staging, and recurrence assessment evaluation.

10.
J Magn Reson Imaging ; 57(1): 259-272, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753082

RESUMO

BACKGROUND: Computed diffusion-weighted imaging (cDWI) is a mathematical computation technique that generates DWIs for any b-value by using actual DWI (aDWI) data with at least two different b-values and may improve differentiation of metastatic from nonmetastatic lymph nodes. PURPOSE: To determine the appropriate b-value for cDWI to achieve a better diagnostic capability for lymph node staging (N-staging) in non-small cell lung cancer (NSCLC) patients compared to aDWI, short inversion time (TI) inversion recovery (STIR) imaging, or positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-d-glucose combined with computed tomography (FDG-PET/CT). STUDY TYPE: Prospective. SUBJECTS: A total of 245 (127 males and 118 females; mean age 72 years) consecutive histopathologically confirmed NSCLC patients. FIELD STRENGTH/SEQUENCE: A 3 T, half-Fourier single-shot turbo spin-echo sequence, electrocardiogram (ECG)-triggered STIR fast advanced spin-echo (FASE) sequence with black blood and STIR acquisition and DWI obtained by FASE with b-values of 0 and 1000 sec/mm2 . ASSESSMENT: From aDWIs with b-values of 0 and 1000 (aDWI1000 ) sec/mm2 , cDWI using 400 (cDWI400 ), 600 (cDWI600 ), 800 (cDWI800 ), and 2000 (cDWI2000 ) sec/mm2 were generated. Then, 114 metastatic and 114 nonmetastatic nodes (mediastinal and hilar lymph nodes) were selected and evaluated with a contrast ratio (CR) for each cDWI and aDWI, apparent diffusion coefficient (ADC), lymph node-to-muscle ratio (LMR) on STIR, and maximum standard uptake value (SUVmax ). STATISTICAL TESTS: Receiver operating characteristic curve (ROC) analysis, Youden index, and McNemar's test. RESULTS: Area under the curve (AUC) of CR600 was significantly larger than the CR400 , CR800 , CR2000 , aCR1000 , and SUVmax . Comparison of N-staging accuracy showed that CR600 was significantly higher than CR400 , CR2000 , ADC, aCR1000 , and SUVmax , although there were no significant differences with CR800 (P = 0.99) and LMR (P = 0.99). DATA CONCLUSION: cDWI with b-value at 600 sec/mm2 may have potential to improve N-staging accuracy as compared with aDWI, STIR, and PET/CT. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Desoxiglucose , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Estadiamento de Neoplasias
12.
Interact Cardiovasc Thorac Surg ; 34(3): 408-415, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34606586

RESUMO

OBJECTIVES: Through 3-dimensional lung volumetric and morphological analyses, we aimed to evaluate the difference in postoperative functional changes between upper and lower thoracoscopic lobectomy. METHODS: A total of 145 lung cancer patients who underwent thoracoscopic upper lobectomy (UL) were matched with 145 patients with lung cancer who underwent thoracoscopic lower lobectomy (LL) between April 2012 and December 2018, based on their sex, age, smoking history, operation side, and pulmonary function. Spirometry and computed tomography were performed before and 6 months after the operation. In addition, the postoperative pulmonary function, volume and morphological changes between the 2 groups were compared. RESULTS: The rate of postoperative decreased and the ratio of actual to predicted postoperative forced expiratory volume in 1 s were significantly higher after LL than after UL (P < 0.001 for both). The tendency above was similar irrespective of the resected side. The postoperative actual volumes of the ipsilateral residual lobe and contralateral lung were larger than the preoperatively measured volumes in each side lobectomy. Moreover, the increased change was particularly remarkable in the middle lobe after right LL. The change in the D-value, representing the structural complexity of the lung, was better maintained in the left lung after LL than after UL (P = 0.042). CONCLUSIONS: Pulmonary function after thoracoscopic LL was superior to that after UL because the upward displacement and the pulmonary reserves of the remaining lobe appeared more robust after LL.


Assuntos
Neoplasias Pulmonares , Pneumonectomia , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Pneumonectomia/efeitos adversos , Pneumonectomia/métodos , Testes de Função Respiratória
13.
Acta Radiol ; 63(10): 1363-1373, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34636644

RESUMO

BACKGROUND: The need for quantitative assessment of interstitial lung involvement on thin-section computed tomography (CT) has arisen in interstitial lung diseases including connective tissue disease (CTD). PURPOSE: To evaluate the capability of machine learning (ML)-based CT texture analysis for disease severity and treatment response assessments in comparison with qualitatively assessed thin-section CT for patients with CTD. MATERIAL AND METHODS: A total of 149 patients with CTD-related ILD (CTD-ILD) underwent initial and follow-up CT scans (total 364 paired serial CT examinations), pulmonary function tests, and serum KL-6 level tests. Based on all follow-up examination results, all paired serial CT examinations were assessed as "Stable" (n = 188), "Worse" (n = 98) and "Improved" (n = 78). Next, quantitative index changes were determined by software, and qualitative disease severity scores were assessed by consensus of two radiologists. To evaluate differences in each quantitative index as well as in disease severity score between paired serial CT examinations, Tukey's honestly significant difference (HSD) test was performed among the three statuses. Stepwise regression analyses were performed to determine changes in each pulmonary functional parameter and all quantitative indexes between paired serial CT scans. RESULTS: Δ% normal lung, Δ% consolidation, Δ% ground glass opacity, Δ% reticulation, and Δdisease severity score showed significant differences among the three statuses (P < 0.05). All differences in pulmonary functional parameters were significantly affected by Δ% normal lung, Δ% reticulation, and Δ% honeycomb (0.16 ≤r2 ≤0.42; P < 0.05). CONCLUSION: ML-based CT texture analysis has better potential than qualitatively assessed thin-section CT for disease severity assessment and treatment response evaluation for CTD-ILD.


Assuntos
Doenças do Tecido Conjuntivo , Doenças Pulmonares Intersticiais , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/tratamento farmacológico , Humanos , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/terapia , Aprendizado de Máquina , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X/métodos
14.
Magn Reson Med Sci ; 21(1): 212-234, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33952785

RESUMO

Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.


Assuntos
Neoplasias Pulmonares , Doenças Torácicas , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Doenças Torácicas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
15.
Radiology ; 302(3): 697-706, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846203

RESUMO

Background Pulmonary MRI with ultrashort echo time (UTE) has been compared with chest CT for nodule detection and classification. However, direct comparisons of these methods' capabilities for Lung CT Screening Reporting and Data System (Lung-RADS) evaluation remain lacking. Purpose To compare the capabilities of pulmonary MRI with UTE with those of standard- or low-dose thin-section CT for Lung-RADS classification. Materials and Methods In this prospective study, standard- and low-dose chest CT (270 mA and 60 mA, respectively) and MRI with UTE were used to examine consecutive participants enrolled between January 2017 and December 2020 who met American College of Radiology Appropriateness Criteria for lung cancer screening with low-dose CT. Probability of nodule presence was assessed for all methods with a five-point visual scoring system by two board-certified radiologists. All nodules were then evaluated in terms of their Lung-RADS classification using each method. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and sensitivity was compared by means of the McNemar test. In addition, weighted κ statistics were used to determine the agreement between Lung-RADS classification obtained with each method and the reference standard generated from standard-dose CT evaluated by two radiologists who were not included in the image analysis session. Results A total of 205 participants (mean age: 64 years ± 7 [standard deviation], 106 men) with 1073 nodules were enrolled. Figure of merit (FOM) (P < .001) had significant differences among three modalities (standard-dose CT: FOM = 0.91, low-dose CT: FOM = 0.89, pulmonary MRI with UTE: FOM = 0.94), with no evidence of false-positive findings in participants with all modalities (P > .05). Agreements for Lung-RADS classification between all modalities and the reference standard were almost perfect (standard-dose CT: κ = 0.82, P < .001; low-dose CT: κ = 0.82, P < .001; pulmonary MRI with UTE: κ = 0.82, P < .001). Conclusion In a lung cancer screening population, ultrashort echo time pulmonary MRI was comparable to standard- or low-dose CT for Lung CT Screening Reporting and Data System classification. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
16.
AJR Am J Roentgenol ; 218(5): 899-908, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877872

RESUMO

BACKGROUND. Whole-body MRI and FDG PET/MRI have shown encouraging results for staging of thoracic malignancy but are poorly studied for staging of small cell lung cancer (SCLC). OBJECTIVE. The purpose of our study was to compare the performance of conventional staging tests, FDG PET/CT, whole-body MRI, and FDG PET/MRI for staging of SCLC. METHODS. This prospective study included 98 patients (64 men, 34 women; median age, 74 years) with SCLC who underwent conventional staging tests (brain MRI; neck, chest, and abdominopelvic CT; and bone scintigraphy), FDG PET/CT, and whole-body MRI within 2 weeks before treatment; coregistered FDG PET/MRI was generated. Two nuclear medicine physicians independently reviewed conventional tests and FDG PET/CT examinations in separate sessions, and two chest radiologists independently reviewed whole-body MRI and FDG PET/MRI examinations in separate sessions. Readers assessed T, N, and M categories; TNM stage; and Veterans Administration Lung Cancer Study Group (VALSG) stage. Reader pairs subsequently reached consensus. Stages determined clinically during tumor board sessions served as the reference standard. RESULTS. Accuracy for T category was higher (p < .05) for whole-body MRI (94.9%) and FDG PET/MRI (94.9%) than for FDG PET/CT (85.7%). Accuracy for N category was higher (p < .05) for whole-body MRI (84.7%), FDG PET/MRI (83.7%), and FDG PET/CT (81.6%) than for conventional staging tests (75.5%). Accuracy for M category was higher (p < .05) for whole-body MRI (94.9%), FDG PET/MRI (94.9%), and FDG PET/CT (94.9%) than for conventional staging tests (84.7%). Accuracy for TNM stage was higher (p < .05) for whole-body MRI (88.8%) and FDG PET/MRI (86.7%) than for FDG PET/CT (77.6%) and conventional staging tests (72.4%). Accuracy for VALSG stage was higher (p < .05) for whole-body MRI (95.9%), FDG PET/MRI (95.9%), and FDG PET/CT (98.0%) than for conventional staging tests (82.7%). Interobserver agreement, expressed as kappa coefficients, ranged from 0.81 to 0.94 across imaging tests and staging endpoints. CONCLUSION. FDG PET/CT, whole-body MRI, and coregistered FDG PET/MRI outperformed conventional tests for various staging endpoints in patients with SCLC. Whole-body MRI and FDG PET/MRI outperformed FDG PET/CT for T category and thus TNM stage, indicating the utility of MRI for assessing extent of local invasion in SCLC. CLINICAL IMPACT. Incorporation of either MRI approach may improve initial staging evaluation in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/patologia , Imagem Corporal Total/métodos
17.
Eur J Cardiothorac Surg ; 60(3): 607-613, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008011

RESUMO

OBJECTIVES: Despite significant advances in surgical techniques, including thoracoscopic approaches and perioperative care, the morbidity rate remains high after lung resection. This study focused on a low attenuation cluster analysis, which represented the size distribution of pulmonary emphysema and assessed its utility for predicting postoperative pulmonary complications after thoracoscopic lobectomy. METHODS: From April 2013 to September 2018, lung cancer patients who received spirometry and computed tomography (CT) before surgery and underwent thoracoscopic lobectomy were included. The cumulative size distribution of the low attenuation area (LAA, defined as ≤-950 Hounsfield unit on CT) clusters followed a power-law characterized by an exponent D-value, a measure of the complexity of the alveolar structure. D-value and LAA% (LAA/total lung volume) were calculated using preoperative 3-dimensional CT software. The relationship between pulmonary complications and patient characteristics, including D-value and LAA%, was investigated. RESULTS: Among 471 patients, there were 61 respiratory complication cases (12.9%). Receiver operation characteristic curve analysis revealed that the best predictive cut-off value of D-value and LAA% for pulmonary complications was 2.27 and 16.5, respectively, with an area under the curve of 0.72 and 0.58, respectively. D-value was significantly correlated with % forced expiratory volume in 1 s. Per univariate analysis, gender, smoking history, forced expiratory volume in 1 s/forced vital capacity, LAA% and D-value were risk factors for predicting postoperative pulmonary complications. In the multivariate analysis, D-value remained a significant predictive factor. CONCLUSION: Preoperative assessment of emphysema cluster analysis may represent the vulnerability of the operated lung and could be the novel predictor for pulmonary complications after thoracoscopic lobectomy.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Análise por Conglomerados , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/cirurgia , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/epidemiologia , Testes de Função Respiratória
18.
Eur J Radiol ; 136: 109574, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33548852

RESUMO

PURPOSE: To evaluate the capability of inspiratory/expiratory Xe-enhanced ADCT for assessment of changes in pulmonary function and regional ventilation of surgically treated NSCLC patients. METHOD AND MATERIALS: Forty consecutive surgically treated NSCLC patients underwent pre- and postoperative inspiratory/expiratory Xe-enhanced ADCT and pulmonary function tests. For each patient, pre- and post-operative data were analyzed and pre- and post-operative wash-in (WI) and wash-out (WO) indexes and ventilation ratio (VR=[WI-WO]/WI) maps generated by means of pixel-by-pixel analyses. Differences between pre- and postoperative WI (ΔWI), WO (ΔWO) and VR (ΔVR) were also determined. To determine the relationship between all ventilation index changes and pulmonary functional loss, Pearson's correlation was used to correlate each ventilation index change with the corresponding pulmonary functional parameter change. In addition, stepwise regression analysis was performed for all ventilation index changes and each corresponding pulmonary functional parameter change. RESULTS: FEV1/FVC% change showed fair or good and significant correlations with ΔWI (r = 0.39, p = 0.01) and ΔVR (r = 0.68, p = 0.001), %FEV1 change good or moderate and significant correlations with ΔWI (r = 0.56, p = 0.0001) and ΔVR (r = 0.76, p < 0.0001), and %VC change moderate yet significant correlation with ΔWI (r = 0.65, p < 0.0001) and ΔVR (r = 0.67, p < 0.0001). Stepwise regression analysis demonstrated that FEV1/FVC% change (r2 = 0.56, p < 0.0001) significantly affected two factors, ΔVR (p < 0.0001) and ΔWI (p = 0.006), as did %FEV1 change (r2 = 0.68, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)], and %VC change (r2 = 0.63, p < 0.0001) [ΔVR (p < 0.0001) and ΔWI (p = 0.0001)]. CONCLUSION: Inspiratory/expiratory Xe-enhanced ADCT has the potential to demonstrate that pre- and postoperative ventilation status of surgically treated NSCLC patients correlates with pulmonary function.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Tomografia Computadorizada por Raios X , Xenônio
19.
Magn Reson Med Sci ; 20(1): 76-82, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269186

RESUMO

PURPOSE: The combination of modified Dixon (mDixon) and periodically rotated overlapping parallel lines with enhanced reconstruction sequence with two interleaved echoes, which promotes uniform fat-suppression and motion insensitivity, has recently become available for commercial magnetic resonance imaging (MRI) scanners. To compare the robustness of this combination sequence with that of standard Cartesian mDixon sequence for fat-suppressed T2-weighted imaging in clinical head and neck MRI. METHODS: Fifty patients with head and neck tumors were involved this study. All patients underwent MRI using both the combination and standard sequences. Two radiologists independently scored motion artifacts and water-fat separation error using a 4-point scale (1, unacceptable; 4, excellent). Furthermore, comprehensive comparative evaluation was performed using a 5-point scale (1, substantially inferior; 5, substantially superior). Data were statistically analyzed using the Wilcoxon signed-rank test. RESULTS: In the motion artifact assessment, ratings of 3 or 4 points were assigned to 45% (observer-1, 58.0%; observer-2, 32.0%) and 97% (100%; 94.0%) of images for the standard and combination sequences, respectively (P < 0.001). For the water-fat separation error assessment, ratings of 3 or 4 points were assigned to 100% (100%; 100%) and 85% (84.0%; 86.0%) of images, respectively (P < 0.001). In the comprehensive evaluation, of the 100 cases (observer-1, 50; observer-2, 50), 96 were rated at four or five points. In cases with slight or no motion artifacts and water-fat separation errors, the combination sequence was superior to the standard sequence in term of noise and sharpness, and equal in terms of contrast. CONCLUSION: Although water-fat separation errors increased significantly in the combination sequence, most of these were acceptable. The significantly decreased motion artifacts in the combination sequence significantly improved image quality overall.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pescoço/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Artefatos , Água Corporal/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador
20.
Eur J Radiol ; 134: 109410, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33246272

RESUMO

PURPOSE: To evaluate the capability ML-based CT texture analysis for improving interobserver agreement and accuracy of radiological finding assessment in patients with COPD, interstitial lung diseases or infectious diseases. MATERIALS AND METHODS: Training cases (n = 28), validation cases (n = 17) and test cases (n = 89) who underwent thin-section CT at a 320-detector row CT with wide volume scan and two 64-detector row CTs with helical scan were enrolled in this study. From 89 CT data, a total of 350 computationally selected ROI including normal lung, emphysema, nodular lesion, ground-glass opacity, reticulation and honeycomb were evaluated by three radiologists as well as by the software. Inter-observer agreements between consensus reading with and without using the software or software alone and standard references determined by consensus of pulmonologists and chest radiologists were determined using κ statistics. Overall distinguishing accuracies were compared among all methods by McNemar's test. RESULTS: Agreements for consensus readings obtained with and without the software or the software alone with standard references were determined as significant and substantial or excellent (with the software: κ = 0.91, p < 0.0001; without the software: κ = 0.81, p < 0.0001; the software alone: κ = 0.79, p < 0.0001). Overall differentiation accuracy of consensus reading using the software (94.9 [332/350] %) was significantly higher than that of consensus reading without using the software (84.3 [295/350] %, p < 0.0001) and the software alone (82.3 [288/350] %, p < 0.0001). CONCLUSION: ML-based CT texture analysis software has potential for improving interobserver agreement and accuracy for radiological finding assessments in patients with COPD, interstitial lung diseases or infectious diseases.


Assuntos
Doenças Pulmonares Intersticiais , Tomografia Computadorizada por Raios X , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Variações Dependentes do Observador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...