Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 44(5): 1925-1930, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677727

RESUMO

BACKGROUND/AIM: Pembrolizumab, a second-line therapy for platinum-refractory advanced urothelial carcinoma (UC), is needed to improve objective response rate. Hence, it is crucial to identify optimal predictive biomarkers of responses. This study aimed to clarify the predictive value and role of signal transducer and activator of transcription 3 (STAT3) in selecting patients with advanced UC who might benefit clinically from pembrolizumab therapy. PATIENTS AND METHODS: We retrospectively analyzed 31 patients who received pembrolizumab therapy for UC. STAT3, phosphorylated STAT3 (p-STAT3), and PD-L1 expression were determined using tissue microarrays constructed from patient-derived specimens, and the association of these expression levels with overall survival was analyzed. We assessed the functional role of STAT3 in bladder cancer cell lines in response to interferon-gamma (IFN-γ). RESULTS: Patients with high STAT3 or p-STAT3 expression, and high platelet-to-lymphocyte ratio (PLR) (n=6) had a significantly shorter OS; in the other patients (n=25), high STAT3 or p-STAT3 expression was significantly associated with improved prognosis. IFN-γ-induced apoptosis was partially dependent on STAT3 in T24 cells but not in JMSU1 cells. CONCLUSION: In patients with advanced UC, STAT3 plays a key role in mediating the efficacy of pembrolizumab through apoptosis in response to IFN-γ.


Assuntos
Anticorpos Monoclonais Humanizados , Apoptose , Interferon gama , Fator de Transcrição STAT3 , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Interferon gama/farmacologia , Prognóstico , Estudos Retrospectivos , Fator de Transcrição STAT3/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia , Neoplasias Urológicas/metabolismo
2.
Biochem Biophys Res Commun ; 676: 165-170, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517219

RESUMO

Immune checkpoint inhibitor (ICI) therapy has been established for patients with advanced urothelial cancer (UC). The necessity of overcoming resistance to ICIs and identifying a predictive factor for the same has been highlighted, such as the assessment of combination therapy with other targeted drugs and the characterization of molecular signatures in the tumor microenvironment. Recently, we reported that low hemoglobin (Hb) levels and a high platelet-to-lymphocyte ratio (PLR) were significantly associated with overall survival in patients with UC who did not benefit from pembrolizumab treatment. In the present study, we identified a possible link between these unfavorable prognostic indicators and PDGF-DD-induced STAT3 activation in UC. Overlapping patients between the high STAT3- or phosphorylated STAT3-positive score group (as assessed by immunohistochemistry) and low Hb levels or high PLR group (as assessed by blood tests) showed significantly worse outcomes after pembrolizumab treatment. Additionally, using the bladder cancer JMSU1 cell line, we demonstrated a possible positive regulatory loop between autocrine/paracrine PDGF-DD and STAT3 signaling. Therefore, we suggest that STAT3 inhibition and PDGF-DD detection in the tumor microenvironment might represent a potential therapeutic strategy to overcome resistance to pembrolizumab. Moreover, this can help identify patients with UC who could benefit from combination treatment.

3.
BMC Cancer ; 23(1): 313, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020276

RESUMO

BACKGROUND: Genomic alterations, including loss of function in chromosome band 11q22-23, are frequently observed in neuroblastoma, which is the most common extracranial childhood tumour. In neuroblastoma, ATM, a DNA damage response-associated gene located on 11q22-23, has been linked to tumorigenicity. Genetic changes in ATM are heterozygous in most tumours. However, it is unclear how ATM is associated with tumorigenesis and cancer aggressiveness. METHODS: To elucidate its molecular mechanism of action, we established ATM-inactivated NGP and CHP-134 neuroblastoma cell lines using CRISPR/Cas9 genome editing. The knock out cells were rigorously characterized by analyzing proliferation, colony forming abilities and responses to PARP inhibitor (Olaparib). Western blot analyses were performed to detect different protein expression related to DNA repair pathway. ShRNA lentiviral vectors were used to knockdown ATM expression in SK-N-AS and SK-N-SH neuroblastoma cell lines. ATM knock out cells were stably transfected with FANCD2 expression plasmid to over-expressed the FANCD2. Moreover, knock out cells were treated with proteasome inhibitor MG132 to determine the protein stability of FANCD2. FANCD2, RAD51 and γH2AX protein expressions were determined by Immunofluorescence microscopy. RESULTS: Haploinsufficient ATM resulted in increased proliferation (p < 0.01) and cell survival following PARP inhibitor (olaparib) treatment. However, complete ATM knockout decreased proliferation (p < 0.01) and promoted cell susceptibility to olaparib (p < 0.01). Complete loss of ATM suppressed the expression of DNA repair-associated molecules FANCD2 and RAD51 and induced DNA damage in neuroblastoma cells. A marked downregulation of FANCD2 expression was also observed in shRNA-mediated ATM-knockdown neuroblastoma cells. Inhibitor experiments demonstrated that the degradation of FANCD2 was regulated at the protein level through the ubiquitin-proteasome pathway. Reintroduction of FANCD2 expression is sufficient to reverse decreased proliferation mediated by ATM depletion. CONCLUSIONS: Our study revealed the molecular mechanism underlying ATM heterozygosity in neuroblastomas and elucidated that ATM inactivation enhances the susceptibility of neuroblastoma cells to olaparib treatment. These findings might be useful in the treatment of high-risk NB patients showing ATM zygosity and aggressive cancer progression in future.


Assuntos
Antineoplásicos , Anemia de Fanconi , Neuroblastoma , Humanos , Criança , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/genética , Antineoplásicos/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Neuroblastoma/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi
4.
Cancer Diagn Progn ; 3(2): 230-235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875313

RESUMO

BACKGROUND/AIM: Several prognostic risk factors have been recognized when using cisplatin-based conventional chemotherapy for the treatment of advanced urothelial carcinoma (UC); these include performance status (PS), liver metastasis, hemoglobin (Hb) levels, time from prior chemotherapy (TFPC), and other systemic inflammation scores including neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). However, the benefit of these indicators for predicting outcome of immune checkpoint inhibitors is not fully understood. Here, we investigated the predictive value of the indicators in patients who received pembrolizumab for the treatment of advanced UC. PATIENTS AND METHODS: Seventy-five patients who received pembrolizumab treatment for advanced UC were included. The Karnofsky PS, liver metastasis, hemoglobin levels, TFPC, NLR, and PLR were analyzed, and their relationship with overall survival (OS) was determined. RESULTS: All factors were highlighted as significant prognostic indicators for OS in the univariate proportional regression analysis (p<0.05 for each). Multivariate analysis revealed that Karnofsky PS and liver metastasis were independent prognostic indicators for OS (p<0.01) but were applicable only for a small number of patients. Notably, the combined analysis with low Hb levels and high PLR was significantly associated with OS in patients who could gain less benefit from pembrolizumab at a median of 6.6 [95% confidence interval (CI)=4.2-9.0] versus 15.1 (95% CI=12.4-17.8) months (p=0.002). CONCLUSION: The combination of Hb levels and PLR may be a broadly applicable indicator for the outcome of pembrolizumab as second-line chemotherapy in patients with advanced UC.

5.
Cancer Sci ; 114(5): 1898-1911, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36661413

RESUMO

Mesenchymal stem cell- or osteoblast-derived osteosarcoma is the most common malignant bone tumor. Its highly metastatic malignant phenotypes, which are often associated with a poor prognosis, have been correlated with the modulation of TP53- and cell-cycle-related pathways. MYC, which regulates the transcription of cell-cycle modulating genes, is used as a representative prognostic marker for osteosarcoma. Another member of the MYC oncoprotein family, MYCN, is highly expressed in a subset of osteosarcoma, however its roles in osteosarcoma have not been fully elucidated. Here, we attempted to create an in vitro tumorigenesis model using hiPSC-derived neural crest cells, which are precursors of mesenchymal stem cells, by overexpressing MYCN on a heterozygous TP53 hotspot mutation (c.733G>A; p.G245S) background. MYCN-expressing TP53 mutated transformed clones were isolated by soft agar colony formation, and administered subcutaneously into the periadrenal adipose tissue of immunodeficient mice, resulting in the development of chondroblastic osteosarcoma. MYCN suppression decreased the proliferation of MYCN-induced osteosarcoma cells, suggesting MYCN as a potential target for a subset of osteosarcoma treatment. Further, comprehensive analysis of gene expression and exome sequencing of MYCN-induced clones indicated osteosarcoma-specific molecular features, such as the activation of TGF-ß signaling and DNA copy number amplification of GLI1. The model of MYCN-expressing chondroblastic osteosarcoma was developed from hiPSC-derived neural crest cells, providing a useful tool for the development of new tumor models using hiPSC-derived progenitor cells with gene modifications and in vitro transformation.


Assuntos
Neuroblastoma , Osteossarcoma , Animais , Camundongos , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Crista Neural/metabolismo , Crista Neural/patologia , Neuroblastoma/patologia , Proteínas Oncogênicas/genética , Osteossarcoma/patologia
6.
Exp Cell Res ; 422(1): 113412, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370852

RESUMO

The overexpression of BMI1, a polycomb protein, correlates with cancer development and aggressiveness. We previously reported that MYCN-induced BMI1 positively regulated neuroblastoma (NB) cell proliferation via the transcriptional inhibition of tumor suppressors in NB cells. To assess the potential of BMI1 as a new target for NB therapy, we examined the effects of reductions in BMI1 on NB cells. BMI1 knockdown (KD) in NB cells significantly induced their differentiation for up to 7 days. BMI1 depletion significantly induced apoptotic NB cell death for up to 14 days along with the activation of p53, increases in p73, and induction of p53 family downstream molecules and pathways, even in p53 mutant cells. BMI1 depletion in vivo markedly suppressed NB xenograft tumor growth. BMI1 reductions activated ATM and increased γ-H2AX in NB cells. These DNA damage signals and apoptotic cell death were not canceled by the transduction of the polycomb group molecules EZH2 and RING1B. Furthermore, EZH2 and RING1B KD did not induce apoptotic NB cell death to the same extent as BMI1 KD. Collectively, these results suggest the potential of BMI1 as a target of molecular therapy for NB and confirmed, for the first time, the shared role of PcG proteins in the DNA damage response of NB cells.


Assuntos
Neuroblastoma , Proteína Supressora de Tumor p53 , Humanos , Proteínas do Grupo Polycomb/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Apoptose/genética , Dano ao DNA/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
7.
Cancer Sci ; 113(12): 4193-4206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36052716

RESUMO

In the present study, we found that EZH1 depletion in MYCN-amplified neuroblastoma cells resulted in significant cell death as well as xenograft inhibition. EZH1 depletion decreased the level of H3K27me1; the interaction and protein stabilization of MYCN and EZH1 appear to play roles in epigenetic transcriptional regulation. Transcriptome analysis of EZH1-depleted cells resulted in downregulation of the cell cycle progression-related pathway. In particular, Gene Set Enrichment Analysis revealed downregulation of reactome E2F-mediated regulation of DNA replication along with key genes of this process, TYMS, POLA2, and CCNA1. TYMS and POLA2 were transcriptionally activated by MYCN and EZH1-related epigenetic modification. Treatment with the EZH1/2 inhibitor UNC1999 also induced cell death, decreased H3K27 methylation, and reduced the levels of TYMS in neuroblastoma cells. Previous reports indicated neuroblastoma cells are resistant to 5-fluorouracil (5-FU) and TYMS (encoding thymidylate synthetase) has been considered the primary site of action for folate analogues. Intriguingly, UNC1999 treatment significantly sensitized MYCN-amplified neuroblastoma cells to 5-FU treatment, suggesting that EZH inhibition could be an effective strategy for development of a new epigenetic treatment for neuroblastoma.


Assuntos
Neuroblastoma , Complexo Repressor Polycomb 2 , Humanos , Ciclo Celular , Linhagem Celular Tumoral , Fluoruracila , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Complexo Repressor Polycomb 2/genética , Animais
8.
Eur J Cell Biol ; 101(3): 151238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35636260

RESUMO

Epigenetic modifications by polycomb repressive complex (PRC) molecules appear to play a role in the tumorigenesis and aggressiveness of neuroblastoma (NB). Embryonic ectoderm development (EED) is a member of the PRC2 complex that binds to the H3K27me3 mark deposited by EZH2 via propagation on adjacent nucleosomes. We herein investigated the molecular roles of EED in MYCN-amplified NB cells using EED-knockdown (KD) shRNAs, EED-knockout sgRNAs, and the EED small molecule inhibitor EED226. The suppression of EED markedly inhibited NB cell proliferation and flat and soft agar colony formation. A transcriptome analysis using microarrays of EED-KD NB cells indicated the de-repression of cell cycle-regulated and differentiation-related genes. The results of a GSEA analysis suggested that inhibitory cell cycle-regulated gene sets were markedly up-regulated. Furthermore, an epigenetic treatment with the EED inhibitor EED226 and the HDAC inhibitors valproic acid/SAHA effectively suppressed NB cell proliferation and colony formation. This combined epigenetic treatment up-regulated cell cycle-regulated and differentiation-related genes. The ChIP sequencing analysis of histone codes and PRC molecules suggested an epigenetic background for the de-repression of down-regulated genes in MYCN-amplified/PRC2 up-regulated NB.


Assuntos
Neuroblastoma , Complexo Repressor Polycomb 2 , Proliferação de Células/genética , Epigênese Genética , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
9.
Anticancer Res ; 42(2): 1131-1136, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35093916

RESUMO

BACKGROUND/AIM: This study aimed to determine useful predictive factors for selecting patients with advanced urothelial carcinoma (UC) who might benefit clinically from treatment with pembrolizumab. PATIENTS AND METHODS: We retrospectively analyzed 54 patients who underwent pembrolizumab treatment for UC. The hemoglobin, albumin, lymphocyte and platelet (HALP) score, neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were calculated as indices of systemic inflammatory response, and the relationships between these scores and the initial tumor response or overall survival, as well as other clinicopathological factors, were assessed. RESULTS: High NLR and PLR were associated with a poor initial tumor response to pembrolizumab. A HALP score <30.05 and a PLR ≥173.73 were associated with worse overall survival. In the multivariate Cox regression analysis, a high PLR was a significant independent prognostic factor for unfavorable outcomes. CONCLUSION: A high pretreatment PLR may be a valuable indicator for choosing therapy other than pembrolizumab in patients with advanced UC.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Plaquetas/patologia , Carcinoma de Células de Transição , Linfócitos/patologia , Neoplasias da Bexiga Urinária , Idoso , Idoso de 80 Anos ou mais , Plaquetas/efeitos dos fármacos , Carcinoma de Células de Transição/sangue , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/tratamento farmacológico , Feminino , Humanos , Japão , Contagem de Linfócitos , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Urotélio/patologia
10.
Oncogenesis ; 10(11): 73, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743173

RESUMO

Genetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.

11.
Oncogene ; 37(20): 2714-2727, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507419

RESUMO

The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also that EZH2-related NTRK1 transcriptional regulation may be the key pathway for NB cell differentiation.


Assuntos
Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Código das Histonas , Neuroblastoma/patologia , Receptor trkA/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Análise de Sobrevida , Regulação para Cima
12.
Oncotarget ; 8(28): 45046-45059, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28620148

RESUMO

BACKGROUND: Despite the use of aggressive therapy, survival rates among high-risk neuroblastoma (NB) patients remain poor. Cancer stem cells (CSCs) are considered to be critically involved in the recurrence and metastasis of NB and are isolated as NB spheres. METHODS: The gene expression profiling of adherent (control) and sphere-forming primary NB cells was conducted using a gene expression microarray. CFC1, which functions in the development of embryos and decides the left-right axis, was strongly expressed in sphere-forming cells only and was related to the unfavorable prognosis of NB patients. The knockdown and overexpression of CFC1 were performed using a lentiviral system in NB cell lines. Sphere formation, cell proliferation, colony formation in soft agar, and xenograft tumor formation were analyzed. RESULTS: The overexpression of CFC1 increased sphere formation, cell growth, and colony formation. These phenotypes, particularly sphere formation, and xenograft tumor formation were significantly suppressed by the knockdown of CFC1. CFC1 inhibited Activin A-induced NB cell differentiation and Smad2 phosphorylation in NB cell lines, indicating its involvement in tumorigenesis related to EGF-CFC co-receptor family molecule pathways. Collectively, these results indicate that CFC1 is a candidate molecule for the development of CSC-targeted therapy for NB.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuroblastoma/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Prognóstico , Transfecção
13.
Eur J Cancer ; 50(8): 1555-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24559687

RESUMO

Neuroblastoma (NB) is a paediatric solid tumour which originates from sympathetic nervous tissues. Deletions in chromosome 1p are frequently found in unfavourable NBs and are correlated with v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) amplification; however, it remains to be elucidated how the 1p loss contributes to MYCN-related oncogenic processes in NB. In this study, we identified the role of Dnmt1-associated protein 1 (DMAP1), coded on chromosome 1p34, in the processes. We studied the expression and function of DMAP1 in NB and found that low-level expression of DMAP1 related to poor prognosis, unfavourable histology and 1p Loss of heterozygosity (LOH) of primary NB samples. Intriguingly, DMAP1 induced ataxia telangiectasia mutated (ATM) phosphorylation and focus formation in the presence of a DNA damage reagent, doxorubicin. By DMAP1 expression in NB and fibroblasts, p53 was activated in an ATM-dependent manner and p53-downstream pro-apoptotic Bcl-2 family molecules were induced at the mRNA level, resulting in p53-induced apoptotic death. BAX and p21(Cip1/Waf1) promoter activity dependent on p53 was clearly up-regulated by DMAP1. Further, MYCN transduction in MYCN single-copy NB cells accelerated doxorubicin (Doxo)-induced apoptotic cell death; MYCN is implicated in DMAP1 protein stabilisation and ATM phosphorylation in these situations. DMAP1 knockdown attenuated MYCN-dependent ATM phosphorylation and NB cell apoptosis. Together, DMAP1 appears to be a new candidate for a 1p tumour suppressor and its reduction contributes to NB tumourigenesis via inhibition of MYCN-related ATM/p53 pathway activation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Repressoras/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Pré-Escolar , Fibroblastos/metabolismo , Humanos , Lactente , Proteína Proto-Oncogênica N-Myc , Fosforilação , Prognóstico , Transdução de Sinais , Análise de Sobrevida
14.
Cancer Sci ; 102(5): 983-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21276135

RESUMO

Mortality from lung cancer is important worldwide. Recently, epigenetic aberration of lung cancer, not only genomic DNA methylation but also chromatin modification, has become an important target for lung cancer research, although previous research has demonstrated that lung cancer develops as a result of both environmental and genetic factors. Here, we demonstrated that an epigenetic regulator/polycomb group protein Bmi1 is more highly expressed in small-cell lung cancer (SCLC) than in non-small-cell lung cancer by immunohistochemical analysis. In vitro experiments indicated that Bmi1 reduction by lentivirus-derived shRNA significantly suppressed proliferation, colony formation and in vivo tumor formation. Importantly, apoptosis was induced by Bmi1 depletion in small-cell lung cancer cells. Furthermore, a tumor suppressor WWOX was identified as a Bmi1 target in the cells by a chromatin immunoprecipitation assay and a quantitative real-time PCR assay; WWOX had a role as a tumor suppressor in SCLC cells; therefore, the Bmi1/WWOX pathway could be a new candidate for a new therapeutic approach for SCLC.


Assuntos
Linhagem da Célula , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Oxirredutases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Carcinoma de Pequenas Células do Pulmão/genética , Proteínas Supressoras de Tumor/genética , Idoso , Apoptose/genética , Biomarcadores Tumorais , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Complexo Repressor Polycomb 1 , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW
15.
Eur J Cancer ; 46(12): 2324-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20591651

RESUMO

HDM2, a human homologue of MDM2, is a major negative regulator of p53 function, and increased expression of HDM2 by its promoter polymorphism SNP309 resulted in p53 inactivation and an increased risk of several tumours, including neuroblastoma (NB). Herein, we show that increased expression of HDM2 is related to a worse prognosis in MYCN-amplified NB patients. HDM2 plays an important role in the expression of Noxa, a pro-apoptotic molecule of the Bcl-2 family, which induces NB cell apoptotic death after doxorubcin (Doxo) treatment. Knockdown of HDM2 by siRNA resulted in the upregulation of Noxa at mRNA/protein levels and improved the sensitivity of Doxo-resistant NB cells, although these were not observed in p53-mutant NB cells. Noxa-knockdown abolished the recovered Doxo-induced cell death by HDM2 reduction. Intriguingly, resistance to Doxo was up-regulated by over-expression of HDM2 in Doxo-sensitive NB cells. By HDM2 expression, p53 was inactivated but its degradation was not accelerated, suggesting that p53 was degraded in a proteasome-independent manner in NB cells; downstream effectors of p53, p21(Cip1/Waf1) and Noxa were suppressed by HDM2. Noxa transcription was considerably regulated by both p53 and p73 in NB cells. Furthermore, in vivo binding of p53 and p73 to Noxa promoter was suppressed and Noxa promoter activation was inhibited by HDM2. Taken together, our results may indicate that the HDM2-related resistance to chemotherapeutic drugs of NB is regulated by p53/p73-dependent Noxa expression in NB.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neuroblastoma/tratamento farmacológico , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteína Tumoral p73 , Regulação para Cima
16.
Cancer Sci ; 101(7): 1646-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20491773

RESUMO

Polyhomeotic homolog 3 (PHC 3) is a member of the human polycomb complex and has been regarded as a candidate tumor suppressor of osteosarcoma. In the present paper, we performed a mutation survey and PHC3 expression analysis by quantitative real-time PCR using 10 osteosarcoma cell lines and 42 primary osteosarcoma samples. Relative PHC3 expression values of clinical samples were analyzed with clinical outcomes, and it was suggested that lower PHC3-expressing patients had significantly worse overall survival. Relative PHC3 values of clinical samples were less than those of normal bone tissues, whereas they were greater than those of cell lines. By denaturing high performance liquid chromatography analysis and direct sequencing, we found a PHC3 missense mutation in U2OS cells, which resulted in arginine56 to proline substitution. The same point mutation existed in four of 42 primary osteosarcoma samples. Regarding functional analysis, PHC3 expression significantly suppressed the colony formation of tumor cells. Intriguingly, polycomb repressive complex 1 members, Bmi1 and Ring1b proteins, were reduced in PHC3-expressing osteosarcoma cells. Deletion mutant PHC3 expression suggested that the carboxyl terminus of PHC3 has a role in suppression; the above-mentioned point mutation of PHC3 also lost inhibitory activities. Conversely, Bmi1 expression reduced PHC3 at the mRNA level and induced the proliferation of osteosarcoma cells. Taken together, we confirmed the role of PHC3 as a tumor suppressor in osteosarcoma cells and found that PHC3-dependent tumor suppression may be caused by modification of the composition of polycomb repressive complex 1 in cancer cells.


Assuntos
Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Osteossarcoma/genética , Adolescente , Adulto , Neoplasias Ósseas/epidemiologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Criança , Proteínas de Ligação a DNA/fisiologia , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Estadiamento de Neoplasias , Proteínas Nucleares/fisiologia , Osteossarcoma/epidemiologia , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Complexo Repressor Polycomb 1 , Análise de Sobrevida , Adulto Jovem
17.
Immunology ; 117(1): 22-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16423037

RESUMO

Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-gamma or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-gamma production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions.


Assuntos
Neoplasias do Colo/imunologia , Interleucina-12/imunologia , Interleucinas/antagonistas & inibidores , Subunidades Proteicas/imunologia , Animais , Células Cultivadas , Neoplasias do Colo/prevenção & controle , Citocinas/biossíntese , Citotoxicidade Imunológica/imunologia , Feminino , Interferon gama/biossíntese , Interleucina-12/genética , Subunidade p40 da Interleucina-12 , Interleucina-23 , Subunidade p19 da Interleucina-23 , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Subunidades Proteicas/genética , Baço/imunologia , Linfócitos T Citotóxicos/imunologia , Transdução Genética , Células Tumorais Cultivadas
18.
Anticancer Res ; 26(6C): 4647-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17214321

RESUMO

Uridine phosphorylase (UP) is one of the enzymes involved in 5-fluorouracil (5-FU) activation. The expression was compared in paired specimens from cancerous and non-cancerous regions of gastric, colon and lung cancer patients. Among 28 paired gastric samples, 20 cases showed greater expression in tumors than in normal surrounding tissues and 8 cases showed equal or lower expression levels in tumors. All the gastric patients received 5-FU before and/or after the surgical resection and the prognosis of the patients, whose UP tumor expression increased, was relatively better than that of the patients with equal or less UP gene tumor expression. In contrast, most of the colon (22 cases in total) and all the lung cancer patients (14 in total) did not receive 5-FU and the majority of the colon (12 cases) and lung (10 cases) specimens showed lower expression in the cancerous region. The differential expression between cancerous and non-cancerous regions in colon and lung cancers was not linked with the prognosis. These data suggest that the paired expression level of the UP gene in gastric cancer is a possible prognostic marker for the patients who received 5-FU.


Assuntos
Neoplasias Gástricas/enzimologia , Uridina Fosforilase/biossíntese , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima , Uridina Fosforilase/genética
19.
Oncol Rep ; 14(4): 831-5, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16142339

RESUMO

Esophageal and oral carcinomas are relatively resistant to adenovirus serotype 5 (Ad5)-mediated gene transfer, primarily because expression of the cellular receptors for Ad5, the coxsackievirus and adenovirus receptor, is often downregulated in these types of tumor. The types of Ad in which the receptor expression is not suppressed in tumors are therefore better vectors for gene transfer into tumors. CD46, a cellular receptor for Ad subtype B2, such as Ad11 and Ad35, is well expressed in a number of esophageal and oral tumor cells. Since the infectivity of Ad to target cells is mainly influenced by the interaction between their fibers and the cellular receptors, we examined the infectivity of chimeric Ad5, whose fiber structure was substituted with that of type 11 or 35 (Ad5/11 or Ad5/35), to 6 human oral and 11 esophagus carcinoma cells. We found that the chimeric Ad, in particular Ad5/35, infected more effectively than Ad5 in all the tumors tested. However, the efficacy of Ad5/35- and Ad5/11-mediated transduction was not correlated with the expression level of CD46 or CD80/86, a cellular receptor of the Ad subtype B1, in the target cells. These data suggest that the Ad subtype B2 are suitable vectors of gene transfer for human squamous cell carcinomas of the upper gastrointestinal tract, and that the infectivity of the Ad subtype B2 can possibly be regulated by other receptors besides CD46.


Assuntos
Adenoviridae/genética , Adenoviridae/patogenicidade , Carcinoma/virologia , Neoplasias Esofágicas/virologia , Esôfago/virologia , Neoplasias Bucais/virologia , Antígeno B7-1/biossíntese , Antígeno B7-2/biossíntese , Northern Blotting , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Separação Celular , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Citometria de Fluxo , Trato Gastrointestinal/metabolismo , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Cofatora de Membrana/biossíntese , Neoplasias Bucais/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo
20.
J Biol Chem ; 278(19): 17255-62, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12611888

RESUMO

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a critical growth factor for a number of physiological and pathological processes. HB-EGF is synthesized as a membrane-anchored form (pro-HB-EGF), and pro-HB-EGF is cleaved at the cell surface to yield soluble HB-EGF by a mechanism called "ectodomain shedding." We show here that the ectodomain shedding of pro-HB-EGF in Vero cells is induced by various stress-inducing stimuli, including UV light, osmotic pressure, hyperoxidation, and translation inhibitors. The pro-inflammatory cytokine interleukin-1beta also stimulated the ectodomain shedding of pro-HB-EGF. An inhibitor of p38 MAPK (SB203580) or the expression of a dominant-negative (dn) form of p38 MAPK inhibited the stress-induced ectodomain shedding of pro-HB-EGF, whereas an inhibitor of JNK (SP600125) or the expression of dnJNK1 did not. 12-O-Tetradecanoylphorbol-13-acetate (TPA) and lysophosphatidic acid (LPA) are also potent inducers of pro-HB-EGF shedding in Vero cells. Stress-induced pro-HB-EGF shedding was not inhibited by the inhibitors of TPA- or LPA-induced pro-HB-EGF shedding or by dn forms of molecules involved in the TPA- or LPA-induced pro-HB-EGF shedding pathway. Reciprocally, SB203580 or dnp38 MAPK did not inhibit TPA- or LPA-induced pro-HB-EGF shedding. These results indicate that stress-induced pro-HB-EGF shedding is mediated by p38 MAPK and that the signaling pathway induced by stress is distinct from the TPA- or LPA-induced pro-HB-EGF shedding pathway.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Animais , Carcinógenos/farmacologia , Chlorocebus aethiops , Citocinas/farmacologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular , Lisofosfolipídeos/farmacologia , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...