Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(8): 1236-1251, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563460

RESUMO

Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.


Assuntos
Fagopyrum , Fagopyrum/genética , Domesticação , Melhoramento Vegetal , Mapeamento Cromossômico , Sequência de Bases
2.
BMC Plant Biol ; 22(1): 353, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864444

RESUMO

BACKGROUND: Common buckwheat is considered a quantitative short-day plant and is classified into the autumn (highly photoperiod sensitive), summer (weakly photoperiod sensitive), and intermediate ecotype. Understanding ecotype differentiation is essential for adaptive expansion and maximizing yield. The genetic analysis for ecotype has focused on photoperiod-dependent flowering time, whereas post-flowering traits such as seed set and maturity time might also regulate ecotype differentiation. RESULTS: A field experiment revealed that ecotype differentiation is mainly defined by the timing of seed set and maturation, whereas flowering time is less relevant. Thus, we focused on maturity time as a trait that defines the ecotype. To detect QTLs for maturity time, we developed two F2 populations derived from early × late-maturing accessions and intermediate × late-maturing accessions. Using genotyping by random amplicon sequencing-direct analysis, we generated a high-density linkage map. QTL analysis detected two major QTLs for maturity time, one in each F2 population. We also detected QTLs for flowering time at loci different from maturity time QTLs, which suggests that different genetic mechanisms regulate flowering and maturity. Association analysis showed that both QTLs for maturity time were significantly associated with variations in the trait across years. CONCLUSIONS: Maturity time appeared to be more suitable for explaining ecotype differentiation than flowering time, and different genetic mechanisms would regulate the timing of flowering and maturation. The QTLs and QTL-linked markers for maturity time detected here may be useful to extend the cultivation area and to fine-tune the growth period to maximize yield in buckwheat.


Assuntos
Fagopyrum , Mapeamento Cromossômico , Ecótipo , Fagopyrum/genética , Genótipo , Locos de Características Quantitativas/genética
3.
BMC Plant Biol ; 21(1): 18, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407135

RESUMO

BACKGROUND: Common buckwheat (2n = 2x = 16) is an outcrossing pseudocereal whose seeds contain abundant nutrients and potential antioxidants. As these beneficial compounds are damaged by preharvest sprouting (PHS) and PHS is likely to increase with global warming, it is important to find efficient ways to develop new PHS-tolerant lines. However, genetic loci and selection markers associated with PHS in buckwheat have not been reported. RESULTS: By next-generation sequencing (NGS) of whole-genome of parental lines, we developed a genome-wide set of 300 markers. By NGS- based bulked segregant analysis (NGS-BSA), we developed 100 markers linked to PHS tolerance. To confirm the effectiveness of marker development from NGS-BSA data, we developed 100 markers linked to the self-compatibility (SC) trait from previous NGS-BSA data. Using these markers, we developed genetic maps with AmpliSeq technology, which can quickly detect polymorphisms by amplicon-based multiplex targeted NGS, and performed quantitative trait locus (QTL) analysis for PHS tolerance in combination with NGS-BSA. QTL analysis detected two major and two minor QTLs for PHS tolerance in a segregating population developed from a cross between the PHS-tolerant 'Kyukei 29' and the self-compatible susceptible 'Kyukei SC7'. We found different major and minor QTLs in other segregating populations developed from the PHS-tolerant lines 'Kyukei 28' and 'NARO-FE-1'. Candidate markers linked to PHS developed by NGS-BSA were located near these QTL regions. We also investigated the effectiveness of markers linked to these QTLs for selection of PHS-tolerant lines among other segregating populations. CONCLUSIONS: We efficiently developed genetic maps using a method combined with AmpliSeq technology and NGS-BSA, and detected QTLs associated with preharvest sprouting tolerance in common buckwheat. This is the first report to identify QTLs for PHS tolerance in buckwheat. Our marker development system will accelerate genetic research and breeding in common buckwheat.


Assuntos
Fagopyrum/crescimento & desenvolvimento , Fagopyrum/genética , Marcadores Genéticos , Germinação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plântula/crescimento & desenvolvimento , Plântula/genética , Mapeamento Cromossômico/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Variação Genética , Genoma de Planta , Genótipo , Magnoliopsida/genética , Magnoliopsida/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Seleção Genética
4.
Breed Sci ; 70(1): 112-117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32351310

RESUMO

Common buckwheat (Fagopyrum esculentum) is a heterostylous self-incompatible (SI) species with two different flower morphologies, pin and thrum. The SI trait is controlled by a single gene complex locus, S. Self-compatible (SC) lines were developed by crossing F. esculentum and F. homotropicum; these lines have an SC gene, Sh , which is dominant over the s allele and recessive to the S allele. S-ELF3 has been identified as a candidate gene in the S locus and is present in the S and Sh but not s alleles. A single-nucleotide deletion in the S-ELF3 gene of the Sh allele results in a frame shift. To develop co-dominant markers to distinguish between ShSh and Shs plants, we performed a next-generation sequencing analysis in combination with bulked-segregant analysis. We developed four co-dominant markers linked to the S locus. We investigated the polymorphism frequency between a self-compatible line and leading Japanese buckwheat cultivars. Linkage between a developed sequence-tagged-site marker and flower morphology was confirmed using more than 1000 segregating plants and showed no recombination. The developed markers would be useful for buckwheat breeding and also to produce lines for genetic analysis such as recombinant inbred lines.

5.
Heredity (Edinb) ; 123(4): 492-502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076649

RESUMO

Common buckwheat (Fagopyrum esculentum) is a heteromorphic self-incompatible (SI) species with two types of floral architecture: thrum (short style) and pin (long style). The floral morphology and intra-morph incompatibility are controlled by a single genetic locus, S. However, the molecular mechanisms underlying the heteromorphic self-incompatibility of common buckwheat remain unclear. To identify these mechanisms, we performed proteomic, quantitative reverse-transcription PCR, and linkage analyses. Comparison of protein profiles between the long and short styles revealed a protein unique to the short style. Amino-acid sequencing revealed that it was a truncated form of polygalacturonase (PG); we designated the gene encoding this protein FePG1. Phylogenetic analysis classified FePG1 into the same clade as PGs that function in pollen development and floral morphology. FePG1 expression was significantly higher in short styles than in long styles. It was expressed in flowers of a short-homostyle line but not in flowers of a long-homostyle line. Linkage analysis indicated that FePG1 was not linked to the S locus; it could be a factor downstream of this locus. Our finding of a gene putatively working under the regulation of the S locus provides useful information for elucidation of the mechanism of heteromorphic self-incompatibility.


Assuntos
Fagopyrum/genética , Proteínas de Plantas/genética , Pólen/genética , Poligalacturonase/genética , Fagopyrum/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ligação Genética/genética , Loci Gênicos/genética , Filogenia , Pólen/crescimento & desenvolvimento , Proteômica
6.
J Exp Bot ; 70(15): 3941-3953, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31035293

RESUMO

Genes in the FLOWERING LOCUS T (FT) family integrate external and internal signals to control various aspects of plant development. In soybean (Glycine max), FT2a and FT5a play a major role in floral induction, but their roles in post-flowering reproductive development remain undetermined. Ectopic overexpression analyses revealed that FT2a and FT5a similarly induced flowering, but FT5a was markedly more effective than FT2a for the post-flowering termination of stem growth. The down-regulation of Dt1, a soybean orthologue of Arabidopsis TERMINAL FLOWER1, in shoot apices in early growing stages of FT5a-overexpressing plants was concomitant with highly up-regulated expression of APETALA1 orthologues. The Dt2 gene, a repressor of Dt1, was up-regulated similarly by the overexpression of FT2a and FT5a, suggesting that it was not involved in the control of stem termination by FT5a. In addition to the previously reported interaction with FDL19, a homologue of the Arabidopsis bZIP protein FD, both FT2a and FT5a interacted with FDL12, but only FT5a interacted with FDL06. Our results suggest that FT2a and FT5a have different functions in the control of post-flowering stem growth. A specific interaction of FT5a with FDL06 may play a key role in determining post-flowering stem growth in soybean.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Caules de Planta/genética , Glycine max/genética
7.
Front Plant Sci ; 9: 1867, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671065

RESUMO

Photoperiod response of flowering determines plant adaptation to different latitudes. Soybean, a short-day plant, has gained the ability to flower under long-day conditions during the growing season at higher latitudes, mainly through dysfunction of phytochrome A genes (E3 and E4) and the floral repressor E1. In this study, we identified a novel molecular genetic basis of photoperiod insensitivity in Far-Eastern Russian soybean cultivars. By testcrossing these cultivars with a Canadian cultivar Harosoy near-isogenic line for a recessive e3 allele, followed by association tests and fine mapping, we determined that the insensitivity was inherited as a single recessive gene located in an 842-kb interval in the pericentromeric region of chromosome 4, where E1-Like b (E1Lb), a homoeolog of E1, is located. Sequencing analysis detected a single-nucleotide deletion in the coding sequence of the gene in insensitive cultivars, which generated a premature stop codon. Near-isogenic lines (NILs) for the loss-of-function allele (designated e1lb) exhibited upregulated expression of soybean FLOWERING LOCUS T (FT) orthologs, FT2a and FT5a, and flowered earlier than those for E1Lb under long-day conditions in both the e3/E4 and E3/E4 genetic backgrounds. These NILs further lacked the inhibitory effect on flowering by far-red light-enriched long-day conditions, which is mediated by E4, but not that of red-light-enriched long-day conditions, which is mediated by E3. These findings suggest that E1Lb retards flowering under long-day conditions by repressing the expression of FT2a and FT5a independently of E1. This loss-of-function allele can be used as a new resource in breeding of photoperiod-insensitive cultivars, and may improve our understanding of the function of the E1 family genes in the photoperiod responses of flowering in soybean.

8.
J Exp Bot ; 68(8): 1873-1884, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338712

RESUMO

Precise timing of flowering is critical to crop adaptation and productivity in a given environment. A number of classical E genes controlling flowering time and maturity have been identified in soybean [Glycine max (L.) Merr.]. The public availability of the soybean genome sequence has accelerated the identification of orthologues of Arabidopsis flowering genes and their functional analysis, and has allowed notable progress towards understanding the molecular mechanisms of flowering in soybean. Great progress has been made particularly in identifying genes and modules that inhibit flowering in long-day conditions, because a reduced or absent inhibition of flowering by long daylengths is an essential trait for soybean, a short-day (SD) plant, to expand its adaptability toward higher latitude environments. In contrast, the molecular mechanism of floral induction by SDs remains elusive in soybean. Here we present an update on recent work on molecular mechanisms of flowering under long days and of stem growth habit, outlining the progress in the identification of genes responsible, the interplay between photoperiod and age-dependent miRNA-mediated modules, and the conservation and divergence in photoperiodic flowering and stem growth habit in soybean relative to other legumes, Arabidopsis, and rice (Oryza sativa L.).


Assuntos
Ritmo Circadiano/fisiologia , Glycine max/genética , Glycine max/fisiologia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Caules de Planta/genética , Caules de Planta/fisiologia , Ritmo Circadiano/genética , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo
9.
J Exp Bot ; 67(17): 5247-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422993

RESUMO

FLOWERING LOCUS T (FT) is an important floral integrator whose functions are conserved across plant species. In soybean, two orthologs, FT2a and FT5a, play a major role in initiating flowering. Their expression in response to different photoperiods is controlled by allelic combinations at the maturity loci E1 to E4, generating variation in flowering time among cultivars. We determined the molecular basis of a quantitative trait locus (QTL) for flowering time in linkage group J (Chromosome 16). Fine-mapping delimited the QTL to a genomic region of 107kb that harbors FT5a We detected 15 DNA polymorphisms between parents with the early-flowering (ef) and late-flowering (lf) alleles in the promoter region, an intron, and the 3' untranslated region of FT5a, although the FT5a coding regions were identical. Transcript abundance of FT5a was higher in near-isogenic lines for ef than in those for lf, suggesting that different transcriptional activities or mRNA stability caused the flowering time difference. Single-nucleotide polymorphism (SNP) calling from re-sequencing data for 439 cultivated and wild soybean accessions indicated that ef is a rare haplotype that is distinct from common haplotypes including lf The ef allele at FT5a may play an adaptive role at latitudes where early flowering is desirable.


Assuntos
Flores/genética , Glycine max/genética , Locos de Características Quantitativas/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/fisiologia , Análise de Sequência de DNA , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia
10.
BMC Plant Biol ; 16: 20, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26786479

RESUMO

BACKGROUND: Understanding the molecular mechanisms of flowering and maturity is important for improving the adaptability and yield of seed crops in different environments. In soybean, a facultative short-day plant, genetic variation at four maturity genes, E1 to E4, plays an important role in adaptation to environments with different photoperiods. However, the molecular basis of natural variation in time to flowering and maturity is poorly understood. Using a cross between early-maturing soybean cultivars, we performed a genetic and molecular study of flowering genes. The progeny of this cross segregated for two maturity loci, E1 and E9. The latter locus was subjected to detailed molecular analysis to identify the responsible gene. RESULTS: Fine mapping, sequencing, and expression analysis revealed that E9 is FT2a, an ortholog of Arabidopsis FLOWERING LOCUS T. Regardless of daylength conditions, the e9 allele was transcribed at a very low level in comparison with the E9 allele and delayed flowering. Despite identical coding sequences, a number of single nucleotide polymorphisms and insertions/deletions were detected in the promoter, untranslated regions, and introns between the two cultivars. Furthermore, the e9 allele had a Ty1/copia-like retrotransposon, SORE-1, inserted in the first intron. Comparison of the expression levels of different alleles among near-isogenic lines and photoperiod-insensitive cultivars indicated that the SORE-1 insertion attenuated FT2a expression by its allele-specific transcriptional repression. SORE-1 was highly methylated, and did not appear to disrupt FT2a RNA processing. CONCLUSIONS: The soybean maturity gene E9 is FT2a, and its recessive allele delays flowering because of lower transcript abundance that is caused by allele-specific transcriptional repression due to the insertion of SORE-1. The FT2a transcript abundance is thus directly associated with the variation in flowering time in soybean. The e9 allele may maintain vegetative growth in early-flowering genetic backgrounds, and also be useful as a long-juvenile allele, which causes late flowering under short-daylength conditions, in low-latitude regions.


Assuntos
Flores/genética , Genes de Plantas , Glycine max/genética , Alelos , Flores/crescimento & desenvolvimento , Genes Recessivos , Glycine max/crescimento & desenvolvimento
11.
Plant Physiol ; 168(4): 1735-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26134161

RESUMO

Photoperiodism is a rhythmic change of sensitivity to light, which helps plants to adjust flowering time according to seasonal changes in daylength and to adapt to growing conditions at various latitudes. To reveal the molecular basis of photoperiodism in soybean (Glycine max), a facultative short-day plant, we analyzed the transcriptional profiles of the maturity gene E1 family and two FLOWERING LOCUS T (FT) orthologs (FT2a and FT5a). E1, a repressor for FT2a and FT5a, and its two homologs, E1-like-a (E1La) and E1Lb, exhibited two peaks of expression in long days. Using two different approaches (experiments with transition between light and dark phases and night-break experiments), we revealed that the E1 family genes were expressed only during light periods and that their induction after dawn in long days required a period of light before dusk the previous day. In the cultivar Toyomusume, which lacks the E1 gene, virus-induced silencing of E1La and E1Lb up-regulated the expression of FT2a and FT5a and led to early flowering. Therefore, E1, E1La, and E1Lb function similarly in flowering. Regulation of E1 and E1L expression by light was under the control of E3 and E4, which encode phytochrome A proteins. Our data suggest that phytochrome A-mediated transcriptional induction of E1 and its homologs by light plays a critical role in photoperiodic induction of flowering in soybean.


Assuntos
Regulação para Baixo , Flores/genética , Glycine max/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Dados de Sequência Molecular , Fotoperíodo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...