Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20039, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414670

RESUMO

Alternative computing such as stochastic computing and bio-inspired computing holds promise for overcoming the limitations of von Neumann computers. However, one difficulty in the implementation of such alternative computing is the need for a large number of random bits at the same time. To address this issue, we propose a scalable true-random-number generating scheme that we refer to as XORing shift registers (XSR). XSR generates multiple uncorrelated true random bitstreams using only two true random number generators as entropy sources and can thus be implemented by a variety of logic devices. Toward superconducting alternative computing, we implement XSR using an energy-efficient superconductor logic family, adiabatic quantum-flux-parametron (AQFP) logic. Furthermore, to demonstrate its performance, we design and observe an AQFP-based XSR circuit that generates four random bitstreams in parallel. The results of the experiment confirm that the bitstreams generated by the XSR circuit exhibit no autocorrelation and that there is no correlation between the bitstreams.

2.
Opt Express ; 28(11): 15824-15834, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549418

RESUMO

We propose a scalable readout interface for superconducting nanowire single-photon detector (SSPD) arrays, which we call the AQFP/RSFQ interface. This interface is composed of adiabatic quantum-flux-parametron (AQFP) and rapid single-flux-quantum (RSFQ) logic families. The AQFP part reads out the spatial information of an SSPD array via a single cable, and the RSFQ part reads out the temporal information via a single cable. The hybrid interface has high temporal resolution owing to low timing jitter in the operation of the RSFQ part. In addition, the hybrid interface achieves high circuit scalability because of low supply current in the operation of the AQFP part. Therefore, the hybrid interface is suitable for handling many-pixel SSPD arrays. We demonstrate a four-pixel SSPD array using the hybrid interface as proof of concept. The measurement results show that the hybrid interface can read out all of the pixels with a low error rate and low timing jitter.

3.
J Nippon Med Sch ; 87(2): 60-65, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31611507

RESUMO

BACKGROUND: Although unicompartmental knee arthroplasty (UKA) has become more common because of its good outcomes, several complications have been reported. Tibial implant alignment, an important cause of such complications, has been investigated; however, the optimal alignment of the tibial implant has not been determined. This study used 3-dimensional finite element analysis to investigate changes in stress distribution in the proximal tibia after UKA at multiple tibial implant alignments. METHODS: A 3-dimensional finite element model was created with CT digital imaging and communications in medicine (CT-DICOM) data from a medial osteoarthritic knee. Change in stress distribution of the tibial implant alignment on the coronal plane (middle position, varus 5°, valgus 5°) and sagittal plane (0°, 5°, 10°) under conditions of a loose boundary between implant and bone and no loosening was analyzed with 3-dimensional finite analysis. RESULTS: In the absence of loosening, the stress distribution was high at the lateral rim of the subchondral bone in the varus alignment model, and the high stress distribution moved from the anterior to the posterior position with posterior tilting from 0° to 10°. With loosening, the stress distribution was high at the proximal tibial medial cortex in the valgus alignment model. CONCLUSIONS: To reduce UKA complications, the present findings indicate that the optimal alignment of the tibial implant is at the middle position on the coronal plane, with a posterior inclination similar to the original inclination on the sagittal plane.


Assuntos
Artroplastia do Joelho/métodos , Análise de Elementos Finitos , Imageamento Tridimensional , Tíbia/cirurgia , Humanos
4.
Sci Rep ; 9(1): 10514, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324832

RESUMO

Adiabatic Quantum-Flux-Parametron (AQFP) logic is an adiabatic superconductor logic family that has been proposed as a future technology towards building extremely energy-efficient computing systems. In AQFP logic, dynamic energy dissipation can be drastically reduced due to the adiabatic switching operations using AC excitation currents, which serve as both clock signals and power supplies. As a result, AQFP could overcome the power/energy dissipation limitation in conventional superconductor logic families such as rapid-single-flux-quantum (RSFQ). Simulation and experimental results show that AQFP logic can achieve an energy-delay-product (EDP) near quantum limit using practical circuit parameters and available fabrication processes. To shed some light on the design automation and guidelines of AQFP circuits, in this paper we present an automatic synthesis framework for AQFP and perform synthesis on 18 circuits, including 11 ISCAS-85 circuit benchmarks, 6 deep-learning accelerator components, and a 32-bit RISC-V ALU, based on our developed standard cell library of AQFP technology. Synthesis results demonstrate the significant advantage of AQFP technology. We forecast 9,313×, 25,242× and 48,466× energy-per-operation advantage, compared to the synthesis results of TSMC (Taiwan Semiconductor Manufacturing Company) 12 nm fin field-effect transistor (FinFET), 28 nm and 40 nm complementary metal-oxide-semiconductor (CMOS) technology nodes, respectively.

5.
Phys Rev E ; 97(1-1): 012124, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448329

RESUMO

According to Landauer's principle, the minimum heat emission required for computing is linked to logical entropy, or logical reversibility. The validity of Landauer's principle has been investigated for several decades and was finally demonstrated in recent experiments by showing that the minimum heat emission is associated with the reduction in logical entropy during a logically irreversible operation. Although the relationship between minimum heat emission and logical reversibility is being revealed, it is not clear how much free energy is required to be dissipated for a logically irreversible operation. In the present study, in order to reveal the connection between logical reversibility and free energy dissipation, we numerically demonstrated logically irreversible protocols using adiabatic superconductor logic. The calculation results of work during the protocol showed that, while the minimum heat emission conforms to Landauer's principle, the free energy dissipation can be arbitrarily reduced by performing the protocol quasistatically. The above results show that logical reversibility is not associated with thermodynamic reversibility, and that heat is not only emitted from logic devices but also absorbed by logic devices. We also formulated the heat emission from adiabatic superconductor logic during a logically irreversible operation at a finite operation speed.

6.
Sci Rep ; 7(1): 75, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28250434

RESUMO

Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

7.
J Colloid Interface Sci ; 327(1): 58-62, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18755470

RESUMO

Miniemulsion polymerization of styrene (St) in the presence of a hydrophobe (hexadecane:HD) using a cationic polymerizable surfactant (N,N-dimethyl-N-n-dodecyl-N-2-methacryloyloxyethylammonium bromide:C(12)Br) and a cationic initiator (2,2'-azobis(2-amidinopropane) dihydrochloride:V50), called St/C(12)Br/V50 hereafter, proceeded efficiently compared with that using sodium dodecyl sulfate (SDS) and potassium persulfate (KPS), i.e., St/SDS/KPS, providing monodisperse polystyrene latex particles with a narrower particle size distribution. In St/C(12)Br/AIBN, where an oil-soluble initiator, i.e., 2,2'-azobisisobutyronitrile (AIBN), was used in place of V50, little changes in polymerization kinetics or in particle size distribution were observed, while a significant drop in polymerization rate and a broad particle size distribution were observed with St/SDS/AIBN. A polymerizable pyrene derivative (1-pyrenylmethyl methacrylate: PyMMA) was quantitatively incorporated into monodisperse latex particles in St/PyMMA/C(12)Br/V50 compared to pyrene (Py) in St/Py/C(12)Br/V50. Contrary to our expectation, however, increased excimer emission was observed with St/PyMMA/C(12)Br/V50 particles, indicating less evenly distributed pyrene chromophores in the particles. The fluorescence lifetime of pyrene chromophores in St/Py/C(12)Br/V50 particles was determined to be 286 ns, which was 17 times longer than that of pyrene in THF solution.


Assuntos
Fluorescência , Nanopartículas/química , Poliestirenos/química , Tensoativos/química , Emulsões , Microesferas , Tamanho da Partícula , Polímeros , Pirenos , Tecnologia Farmacêutica
8.
Chem Res Toxicol ; 20(7): 999-1007, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17580912

RESUMO

1-nitropyrene (1-NP) is one of the most abundant nitrated polycyclic aromatic hydrocarbons (NPAHs) in diesel exhaust particulate matter (DEP) and is a main contributor of direct-acting mutagenicity in DEP. Therefore, the metabolites of 1-NP are expected to be a biomarker for assessment of exposure to DEP. In this study, a highly specific and sensitive analytical method using liquid chromatography with tandem mass spectrometry (LC-MS/MS) was developed to determine urinary 1-NP metabolites. After enzymatic hydrolysis of the conjugated metabolites, the analytes were selectively extracted from the urine matrix with blue rayon. The eluate from the rayon was further purified on an acidic alumina cartridge. Hydroxy-N-acetyl- 1-aminopyrenes (6- and 8-OHNAAP) and hydroxy-1-nitropyrenes (3-, 6-, and 8-OHNP) in human urine were identified by their retention times and MS/MS spectra and quantified by using deuterated internal standards. 1-NP metabolites were quantified in urine from all healthy, nonoccupationally exposed subjects. 6-OHNAAP, 8-OHNAAP, 6-OHNP, and 8-OHNP (means of 117, 109, 203, and 137 pmol/mol creatinine, respectively) were the most abundant isomers in human urine. This report is the first to demonstrate the presence of OHNAAPs and OHNPs in human urine, in agreement with previous in vivo and in vitro studies that predicted that these metabolites should be excreted into human urine. This method for determining urinary 1-NP metabolites should be useful for the surveillance of exposure to NPAHs and DEP and will facilitate the study of cancer risk associated with these exposures.


Assuntos
Biomarcadores/urina , Exposição Ambiental/análise , Pirenos/análise , Emissões de Veículos/análise , Adulto , Poluição do Ar/análise , Calibragem , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pirenos/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
9.
Chem Pharm Bull (Tokyo) ; 50(4): 484-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11963994

RESUMO

The reactions of sec-aminodienyl esters 3 with acetylacetone (4) afforded N-alkyl 3-acetyl-4-methoxycarbonylmethyl-2-methyl-1,4-dihydropyridines 5 and enamines 6, providing a new azaelectrocyclization reaction.


Assuntos
Desenho de Fármacos , Piridinas/síntese química , Piridinas/farmacologia , Cromatografia em Gel , Cromatografia em Camada Fina , Ciclização , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...