Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3431, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341477

RESUMO

This study investigates the application of the Metaheuristic Aided Structural Topology Optimization (MASTO) method as a novel approach to address the multiphysics design challenge of creating a heat sink with both high heat conductivity and minimal Electromagnetic Interference (EMI). A distinctive 2D layout with elongated fins is examined for electromagnetic traits, highlighting resonance-related EMI concerns. MASTO proves to be a valuable tool for navigating the complex design space, yielding thoughtfully optimized solutions that harmonize efficient heat dissipation with effective EMI control. By merging simulation findings with practical observations, this study underscores the potential of the MASTO method in achieving effective designs for intricate multiphysics optimization problems. Specifically, the method's capacity to address the complex interplay of heat transfer with convection and the suppression of electromagnetic emissions is showcased. Moreover, the study demonstrates the feasibility of translating these solutions into tangible outcomes through manufacturing processes.

2.
J Phys Condens Matter ; 36(20)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38328924

RESUMO

We report on the magnetic, electrical transport, caloric and electronic structure properties of TbFe4.4Al7.6polycrystalline alloy using experiment and theory. The alloy crystallizes in tetragonal structure with I4/mmm space group with lattice parametersa = b= 8.7234(5) Å andc= 5.0387(6) Å. It is ferrimagnetic with a compensation temperature ofTcmp∼151 K, Curie-Weiss temperatureθCW∼172.11 K and an effective magnetic momentµeff= (2.37±0.07)µB/f.u withZ= 2. At low temperatures, kinetic arrest-like first-order phase transition is realized through the thermal hysteresis between field-cooled cooling and field-cooled warming curves ofM(T) and virgin curves ofM(H) andρ(H)which are outside the hysteresis loops with metamagnetic transition. The high magnetic field suppression of multiple transitions and reduced coercive fieldHcoerand remnant magnetizationMremwith increasing temperature are reported.HcoerandMremcease to exist above the compensation temperatureTcmp. A correlation between the isothermal magnetization and resistivity is discussed. Specific heatC(T) analysis reveals a Sommerfeld parameter ofγ= 0.098 J⋅mol-1⋅K-2and a Debye temperature ofθD∼351.2 K. The sample is metallic as inferred from theρ(T)behavior and Sommerfeld parameter. The magnetoresistance of the alloy is low and negative which indicates the suppression of weak spin-fluctuations. This alloy avoids the tricritical point despite first-to-second order phase transition. The electronic and magnetic structure calculations, by making use of full potential linearized augmented plane wave method, suggest metallic ferrimagnetic ground state of TbFe4.4Al7.6with Tb atoms contributing ferromagnetically (5.87µB) and Fe atoms with antiferromagnetic contribution (2.67µB), in close agreement with the experimental observation.

3.
ACS Appl Mater Interfaces ; 15(40): 46962-46970, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768216

RESUMO

With the ongoing climate and energy crises, thermoelectric conversion has slowly emerged as a clean and reliable alternative energy source for small Internet of Things (IoT) devices. Commercially available thermoelectric generators (TEGs) are typically composed of expensive and toxic Bi2Te3-based thermoelectric materials and require complicated and energy-intensive device assembly processes. As an alternative solution, we have developed a Ag- and Cu-chalcogenide-based monolithic TEG using simple, quick, and low-energy-cost device fabrication processes for low-grade waste heat recovery for energy harvesting. We used ductile Ag2S0.55Se0.45 and overstoichiometric Cu2.075Se, both possessing excellent transport properties around room temperature, with a zT value of ∼0.5 at 300 K. By optimizing the device fabrication process, we were successfully able to assemble the monolithic TEGs without any significant Ag- or Cu-ion migration and obtained a dense and robust device. Strategic optimization of the device structure was able to reduce the electrical contact resistance of the device, which resulted in increased power output. A maximum power density of 0.68 mW/cm2 at a ΔT = 30 K was obtained, which is comparable to a similar Bi2Te3-based monolithic TEG. These results show the potential of chalcogenide-based monolithic TEG as a simple and low-cost alternative to Bi2Te3-based TEGs for energy harvesting applications.

4.
J Phys Condens Matter ; 35(39)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37343572

RESUMO

We investigate here the magnetic, transport, local structural and electronic properties of Co2Mn1-xCrxAl (x= 0, 0.05, 0.1 and 0.2). Our results show that all the compounds stabilise in B2 phase and are ferromagnets. The results reveal disorder at the structural and magnetic levels. X-ray absorption near edge structure (XANES) analysis reveal signature of antisite disorder between Mn and Al atoms with equal ratio. The electronic structure calculations suggest enhancement in the half metallicity, localisation of electrons at the Fermi level and an increment in density of states with doping. The combined results of electronic structure calculations and XANES studies suggest transfer of electrons to the Co site. The results of high temperature resistivity measurements suggest the conduction electrons are undergoing transition from delocalisation to weak localisation to activated behaviour with Cr doping. The extended x-ray absorption spectroscopic analysis shows that the local structure around Mn atom is different from the global structure as obtained from the x-ray diffraction results. The behaviour of the edge region is in line with the trend as obtained from the compositional analysis. We observe link between the hybridisation of 3dlike states at the Mn, Cr sites with that at the Co site and the transport properties. This could help in understanding the unusual decrement in the lattice parameter with doping. These results reveal the role of local structure in understanding the physical properties of such systems.

5.
Nat Mater ; 22(6): 703-709, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36879002

RESUMO

The cuprate high-temperature superconductors exhibit many unexplained electronic phases, but the superconductivity at high doping is often believed to be governed by conventional mean-field Bardeen-Cooper-Schrieffer theory1. However, it was shown that the superfluid density vanishes when the transition temperature goes to zero2,3, in contradiction to expectations from Bardeen-Cooper-Schrieffer theory. Our scanning tunnelling spectroscopy measurements in the overdoped regime of the (Pb,Bi)2Sr2CuO6+δ high-temperature superconductor show that this is due to the emergence of nanoscale superconducting puddles in a metallic matrix4,5. Our measurements further reveal that this puddling is driven by gap filling instead of gap closing. The important implication is that it is not a diminishing pairing interaction that causes the breakdown of superconductivity. Unexpectedly, the measured gap-to-filling correlation also reveals that pair breaking by disorder does not play a dominant role and that the mechanism of superconductivity in overdoped cuprate superconductors is qualitatively different from conventional mean-field theory.

6.
J Phys Condens Matter ; 35(19)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867880

RESUMO

We investigate the unusual phase transitions in SrRuO3and Sr0.5Ca0.5Ru1-xCrxO3(x = 0, 0.05 and 0.1) employing x-ray diffraction, resistivity, magnetic studies and x-ray photoemission spectroscopy. Our results show the compounds undergo a crossover from itinerant ferromagnetism to localized ferromagnetism. The combined studies suggest Ru and Cr be in the 4+ valence state. A Griffith phase and an enhancement in Curie temperature (Tc) from 38 K to 107 K are observed with Cr doping. A shift in the chemical potential towards the valence band is observed with Cr doping. In the metallic samples, interestingly, a direct link between the resistivity and orthorhombic strain is observed. We also observe a connection between orthorhombic strain andTcin all the samples. Detailed studies in this direction will be helpful to choose suitable substrate materials for thin-film/device fabrication and hence manoeuvre its properties. In the non-metallic samples, the resistivity is mainly governed due to disorder, electron-electron correlation effects and a reduction in the number of electrons at the Fermi level. The value of the resistivity for the 5% Cr doped sample suggests semi-metallic behaviour. Understanding its nature in detail using electron spectroscopic techniques could unravel the possibility of its utility in high-mobility transistors at room temperature and its combined property with ferromagnetism will be helpful in making spintronic devices.

7.
Nanotechnology ; 34(11)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36595242

RESUMO

The crystallographic and transport properties of thin films fabricated by pulsed laser deposition and belonging to the Smy(FexNi1-x)4Sb12filled skutterudite system were studied with the aim to unveil the effect exerted by temperature and duration of thermal treatments on structural and thermoelectric features. The importance of annealing treatments in Ar atmosphere up to 523 K was recognized, and the thermal treatment performed at 473 K for 3 h was selected as the most effective in improving the material properties. With respect to the corresponding bulk compositions, a significant enhancement in phase purity, as well as an increase in electrical conductivity and a drop in room temperature thermal conductivity, were observed in annealed films. The low thermal conductivity, in particular, can be deemed as deriving from the reduced dimensionality and the consequent substrate/film interfacial stress, coupled with the nanometric grain size.

8.
J Phys Condens Matter ; 34(43)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35961287

RESUMO

We investigate the effect of sample preparation conditions on the link between the structural and physical properties of polycrystalline spin-orbit Mott insulator, Sr2IrO4. The samples were prepared in two batches. With the first batch prepared as per the commonly adopted procedure in literature and the second batch prepared adopting the same procedure as the first batch but with an additional annealing in vacuum. Interestingly, our results show that without change in the value of the Curie temperature (TC), there occurs increase in the value of magnetization, resistivity, magneto-resistance (MR) and an increase in temperature range of stabilization of the canted antiferromagnetic structure. The temperature behaviour of the difference in the irreversible magnetization between the samples is in line with the difference in the Ir-O-Ir in-plane bond angle. At low temperatures, the conduction mechanism in the first batch of the sample is mainly governed by disorder while in the case of the other sample it is of Arrhenius type. The magneto-transport results have shown its strong link with the disorder and structural results. Although the nature and mechanism of the disorder needs to be investigated further, the present results throw light on the role of disorder and its connectivity between the structure and physical properties to understand its complex behaviours.

9.
ACS Appl Mater Interfaces ; 14(34): 38642-38650, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977402

RESUMO

With the development of application of wireless sensor nodes (WSNs), the need for energy harvesting is rapidly increasing. In this study, we designed and fabricated a robust monolithic thermoelectric generator (TEG) using a simple, low-energy, and low-cost device fabrication process. Our monolithic device consists of Ag2S0.2Se0.8 and Bi0.5Sb1.5Te3 as n-type and p-type legs, respectively, while the empty space between the legs was filled with highly dense, flexible, and thin Ag2S that serves as both an insulating spacer and a shock absorber, which potentially augments the robustness of preventing from damage from an external mechanical force. From the optimization of the device structure via finite element method (FEM) simulations, a three-pair device with dimensions of 12 mm × 10 mm × 10 mm was found to have a theoretical maximum power density of 8.2 mW cm-2 at a ΔT of 50 K. For considering this inevitable contact resistance, experimental measurement and FEM simulation were combined for quantifying the junction resistance; a power density of 2.1 mW cm-2 was established with the consideration of the contact resistance at the p-n junctions. Using these optimized structural parameters, a device was fabricated and was found to have a maximum power density of 2.02 mW cm-2 at a ΔT of 50 K, which is in good agreement with our simulations. The results from our monolithic TEG show that despite the simple, low-energy, and low-cost device fabrication process, the power generation is still comparable to other reported TEGs. It is worth mentioning that our design could be extended to other chalcogenide materials of appropriate temperature regions and/or better zT. Besides, the quantification of contact resistance also exhibited reference value for the enhancement of thermoelectric conversion application. These results provide a convenient, economic, and efficient strategy for waste energy harvesting close to room temperature, which can broaden the applications of waste heat harvesting.

10.
J Phys Condens Matter ; 34(34)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35697025

RESUMO

We report on the structural and magnetic properties of Ru substituted skyrmion metal MnSi i.e. Mn1-xRuxSi for the nominal compositions of0⩽x⩽0.5. The composition-temperature (x-T) phase diagram illustrates the substitution-driven changes in the magnetic behavior. It is confirmed that the magnetic ordering temperature (para-to helimagnetic)Ttrand the effective magneticµeffmoment decrease with increasingx. This indicates the suppression of magnetic order by the substitution of Ru in MnSi. However, the magnetic nature is sustained up to a concentration of aboutx= 0.1 above which the system exhibits spin-glass like nature as inferred from the negative Curie-Weiss temperatureθCW, reduced magnetic moment (of the order 10-2 µBf.u.-1) and linearM-H(at 2 K) inx= 0.5. Mn1-xRuxSi is found to avoid the quantum phase transition and exhibits a composition-driven magnetic to spin-glass like transition.

11.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832325

RESUMO

The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 µW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 µW/m·K2) while thermal conductivity κ was reduced about four times.

12.
J Phys Condens Matter ; 34(3)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34663764

RESUMO

Insight about the scattering mechanisms responsible for reduction in the lattice thermal conductivity (κL) in half-Heusler alloys (HHA) is imperative. In this context, we have thoroughly investigated the temperature response of thermal conductivity of ZrCo1-xIrxSb (x= 0, 0.1 and 0.25). For ZrCoSb,κLis found to be ∼15.13 W m-1 K-1at 300 K, which is drastically reduced to ∼4.37 W m-1 K-1in ZrCo0.9Ir0.1Sb. This observed reduction is ascribed to softening of acoustic phonon modes and point defect scattering, on substitution of heavier mass. However, no further reduction inκLis observed in ZrCo0.75Ir0.25Sb, because of identical scattering parameter. This has been elucidated based on the Klemen's Callaway model. Also, in the parent alloy, phonon-phonon scattering mechanism plays a significant role in heat conduction process, whereas in Ir substituted alloys, point defect scattering (below 500 K) and phonon-phonon scattering (above 750 K) are the dominant scattering mechanisms. The minimumκLis found to be ∼1.73 W m-1 K-1(at 950 K) in ZrCo0.9Ir0.1Sb, which is the lowest reported value till now, for n-type Zr based HHA. Our studies indicate that partial substitution of heavier mass element Ir at Co-site effectively reduces theκLof n-type ZrCoSb, without modifying the nature of charge carriers.

13.
Materials (Basel) ; 14(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34640169

RESUMO

Filled skutterudites are currently studied as promising thermoelectric materials due to their high power factor and low thermal conductivity. The latter property, in particular, can be enhanced by adding scattering centers, such as the ones deriving from low dimensionality and the presence of interfaces. This work reports on the synthesis and characterization of thin films belonging to the Smy(FexNi1-x)4Sb12-filled skutterudite system. Films were deposited under vacuum conditions by the pulsed laser deposition (PLD) method on fused silica substrates, and the deposition temperature was varied. The effect of the annealing process was studied by subjecting a set of films to a thermal treatment for 1 h at 423 K. Electrical conductivity σ and Seebeck coefficient S were acquired by the four-probe method using a ZEM-3 apparatus performing cycles in the 348-523 K temperature range, recording both heating and cooling processes. Films deposited at room temperature required three cycles up to 523 K before being stabilized, thus revealing the importance of a proper annealing process in order to obtain reliable physical data. XRD analyses confirm the previous result, as only annealed films present a highly crystalline skutterudite not accompanied by extra phases. The power factor of annealed films is shown to be lower than in the corresponding bulk samples due to the lower Seebeck coefficients occurring in films. Room temperature thermal conductivity, on the contrary, shows values comparable to the ones of doubly doped bulk samples, thus highlighting the positive effect of interfaces on the introduction of scattering centers, and therefore on the reduction of thermal conductivity.

14.
ACS Appl Mater Interfaces ; 11(34): 31169-31175, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31381292

RESUMO

In this study, the effect of the grain boundary density on the transport properties of the Re-substituted higher manganese silicide Mn30.4Re6Si63.6 has been investigated. The efficiency of electrical energy conversion from waste heat, mainly in thermoelectric generators, depends on how the thermal conduction is reduced, while the charge-carrier electrons/holes contribute to possess a large magnitude of both the electrical conductivity σ and Seebeck coefficient S. In this work, we tried to obtain such a condition with a novel approach of merging the energy-filtering effect at the grain boundaries to improve the power factor (PF) = S2σ. The nanostructuring and heavy-element substitution were also employed to greatly scatter the phonon conduction. As a result, enhancement of the PF was observed in the diffused nanostructure of annealed ribbon samples, and the enhancement was correlated with the formation of Schottky barriers at the grain boundary interface. Together with a reduction of the thermal conductivity to very low magnitude 1.27 W m-1 K-1, we obtained a maximum ZT = 1.15 at 873 K for the annealed ribbon samples.

15.
Nat Commun ; 10(1): 72, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622265

RESUMO

Both electrical conductivity σ and Seebeck coefficient S are functions of carrier concentration being correlated with each other, and the value of power factor S2σ is generally limited to less than 0.01 W m-1 K-2. Here we report that, under the temperature gradient applied simultaneously to both parallel and perpendicular directions of measurement, a metallic copper selenide, Cu2Se, shows two sign reversals and colossal values of S exceeding ±2 mV K-1 in a narrow temperature range, 340 K < T < 400 K, where a structure phase transition takes place. The metallic behavior of σ possessing larger magnitude exceeding 600 S cm-1 leads to a colossal value of S2σ = 2.3 W m-1 K-2. The small thermal conductivity less than 2 W m-1 K-1 results in a huge dimensionless figure of merit exceeding 400. This unusual behavior is brought about by the self-tuning carrier concentration effect in the low-temperature phase assisted by the high-temperature phase.

16.
Nat Commun ; 6: 7699, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158431

RESUMO

In contrast to a complex feature of antinodal state, suffering from competing orders, the pairing gap of cuprates is obtained in the nodal region, which therefore holds the key to the superconducting mechanism. One of the biggest question is whether the point nodal state as a hallmark of d-wave pairing collapses at Tc like the BCS-type superconductors, or it instead survives above Tc turning into the preformed pair state. A difficulty in this issue comes from the small magnitude of the nodal gap, which has been preventing experimentalists from solving it. Here we use a laser ARPES capable of ultrahigh-energy resolution, and detect the point nodes surviving far beyond Tc in Bi2212. By tracking the temperature evolution of spectra, we reveal that the superconductivity occurs when the pair-breaking rate is suppressed smaller than the single-particle scattering rate on cooling, which governs the value of Tc in cuprates.

17.
Sci Technol Adv Mater ; 15(6): 064801, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877728

RESUMO

The bulk thermal rectifiers usable at a high temperature above 300 K were developed by making full use of the unusual electron thermal conductivity of icosahedral quasicrystals. The unusual electron thermal conductivity was caused by a synergy effect of quasiperiodicity and by a narrow pseudogap at the Fermi level. The rectification ratio, defined by TRR = [Formula: see text], reached vary large values exceeding 2.0. This significant thermal rectification would lead to new practical applications for the heat management.

18.
Phys Rev Lett ; 111(15): 157003, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160620

RESUMO

We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T* and T(pair), consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (T(pair)) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.

19.
Phys Rev Lett ; 110(21): 217006, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745917

RESUMO

The nodal band dispersion in (Bi,Pb)(2)(Sr,La)(2)CuO(6+δ) (Bi2201) is investigated over a wide range of doping by using 7-eV laser-based angle-resolved photoemission spectroscopy. We find that the low-energy band renormalization ("kink"), recently discovered in Bi(2)Sr(2)CaCu(2)O(8+δ) (Bi2212), also occurs in Bi2201, but at a binding energy around half that in Bi2212. Surprisingly, the coupling energy dramatically increases with a decrease of carrier concentration, showing a sharp enhancement across the optimal doping. These properties (material and doping dependence of the coupling energy) demonstrate the significant correlation among the mode coupling, the energy gap close to the node, and the strong electron correlation. Our results suggest forward scattering arising from the interplay between the electrons and in-plane polarized acoustic phonon branch as the origin of the low-energy renormalization.

20.
Nature ; 457(7227): 296-300, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19148096

RESUMO

In a classical Bardeen-Cooper-Schrieffer superconductor, pairing and coherence of electrons are established simultaneously below the critical transition temperature (T(c)), giving rise to a gap in the electronic energy spectrum. In the high-T(c) copper oxide superconductors, however, a pseudogap extends above T(c). The relationship between the pseudogap and superconductivity is one of the central issues in this field. Spectral gaps arising from pairing precursors are qualitatively similar to those caused by competing electronic states, rendering a standard approach to their analysis inconclusive. The issue can be settled, however, by studying the correlation between the weights associated with the pseudogap and superconductivity spectral features. Here we report a study of two spectral weights using angle-resolved photoemission spectroscopy. The weight of the superconducting coherent peak increases away from the node following the trend of the superconducting gap, but starts to decrease in the antinodal region. This striking non-monotonicity reveals the presence of a competing state. We demonstrate a direct correlation, for different values of momenta and doping, between the loss in the low-energy spectral weight arising from the opening of the pseudogap and a decrease in the spectral weight associated with superconductivity. We therefore conclude that the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...