Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798326

RESUMO

Background: We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods: XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results: We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion: The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.

2.
Physiol Genomics ; 54(7): 231-241, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503009

RESUMO

Hypertension (HTN) is a complex disease influenced by heritable genetic elements and environmental interactions. Dietary salt is among the most influential modifiable factors contributing to increased blood pressure (BP). It is well established that men and women develop BP impairment in different patterns and a recent emphasis has been placed on identifying mechanisms leading to the differences observed between the sexes in HTN development. The current work reported here builds on an extensive genetic mapping experiment that sought to identify genetic determinants of salt-sensitive (SS) HTN using the Dahl SS rat. BTG antiproliferation factor 2 (Btg2) was previously identified by our group as a candidate gene contributing to SS HTN in female rats. In the current study, Btg2 was mutated using transcription activator-like effector nuclease (TALEN)-targeted gene disruption on the SSBN congenic rat background. The Btg2 mutated rats exhibited impaired BP and proteinuria responses to a high-salt diet compared with wild-type rats. Differences in body weight, mutant pup viability, skeletal morphology, and adult nephron density suggest a potential role for Btg2 in developmental signaling pathways. Subsequent cell cycle gene expression assessment provides several additional signaling pathways that Btg2 may function through during salt handling in the kidney. The expression analysis also identified several potential upstream targets that can be explored to further isolate therapeutic approaches for SS HTN.


Assuntos
Hipertensão , Proteínas Imediatamente Precoces , Animais , Pressão Sanguínea/genética , Feminino , Humanos , Hipertensão/tratamento farmacológico , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/uso terapêutico , Rim/metabolismo , Mutação/genética , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico
3.
Acta Neuropathol Commun ; 8(1): 206, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256836

RESUMO

The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.


Assuntos
Moléculas de Adesão Celular/genética , Córtex Entorrinal/patologia , Neurônios GABAérgicos/patologia , Convulsões/genética , Animais , Eletroencefalografia , Predisposição Genética para Doença , Excitação Neurológica/genética , Camundongos , Ratos , Ratos Mutantes
4.
Methods Mol Biol ; 2018: 115-130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31228154

RESUMO

Transgenic technology in rats is increasingly important for the design and implementation of biological and physiological studies in the fields of neuroscience, pharmacology, and toxicology. Pluripotent embryonic stem cells (ESCs) are a useful tool for generation of gene-modified rats. During the last decade, not only foreign DNA introduction but also endogenous DNA modification has been successfully achieved with rat ESCs. Detailed protocols for establishment of bona fide rat ESCs and their use for production of gene-modified rats are described in this chapter.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Edição de Genes/veterinária , Animais , Animais Geneticamente Modificados , Células Cultivadas , Células Alimentadoras/citologia , Feminino , Masculino , Camundongos , Ratos , Ratos Transgênicos
5.
Methods Mol Biol ; 2018: 131-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31228155

RESUMO

New genome-editing tools, such as ZFNs, TALEN, and CRISPR/Cas9, have enabled the generation of gene-modified models effectively in mammals. These technologies are a powerful tool for studying gene function and creating animal models for human diseases. On the other hand, such gene-modified animals are raised in numerous experimental animal facilities, which puts pressure on breeding space and maintenance costs. Embryo and sperm cryopreservation is not only the most simple and cost-effective method available for most gene-modified strains but also the most reliable method to preserve strains to avoid breeding problems and contamination. We have established a reliable, high quality embryo and sperm cryopreservation system for rat strains, ensuring the longevity of these valuable resources for the scientific community. These cryopreserved resources have been successfully used to rederive next generation pups using embryo transfer and intracytoplasmic sperm injection (ICSI). In this chapter, we describe in detail protocols for rat embryo vitrification and sperm cryopreservation followed by pup rederivation using the ICSI procedure and embryo transfer.


Assuntos
Criopreservação/veterinária , Embrião de Mamíferos/citologia , Espermatozoides/citologia , Animais , Técnicas de Cultura Embrionária , Transferência Embrionária , Desenvolvimento Embrionário , Feminino , Edição de Genes , Masculino , Ratos , Injeções de Esperma Intracitoplásmicas
6.
J Neuropathol Exp Neurol ; 77(8): 665-672, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850869

RESUMO

Mitochondrial diseases (MDs) result from alteration of the mitochondrial respiratory chain (MRC) function. Despite the prevalence of MDs in the population, the paucity of animal models available limits the understanding of these disorders. Mutations in SDHA, a gene that codes for the alpha subunit of succinate dehydrogenase (SDH), can cause some forms of MD. SDHA is a crucial contributor to MRC function. In order to expand the range of MD animal models available, we attempted to generate a Sdha knockout rat. Since homozygous Sdha-/- rats could neither be identified in newborn litters, nor as early as embryonic day 14, we evaluated wild-type (WT) and heterozygous Sdha+/- genotypes. No differences in behavioral, biochemical, or molecular evaluations were observed between WT and Sdha+/- rats at 6 weeks or 6 months of age. However, 30% of Sdha+/- rats displayed mild muscle fiber atrophy with rare fibers negative for cytochrome oxidase and SDH on histochemical staining. Collectively, our data provide additional evidence that modeling SDH mutations in rodents may be challenging due to animal viability, and heterozygous rats are insufficiently symptomatic at a phenotypic and molecular level to be of significant use in the study of SDH deficiency.


Assuntos
Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Força da Mão/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo II de Transporte de Elétrons/análise , Técnicas de Inativação de Genes/métodos , Masculino , Músculo Esquelético/química , Ratos , Ratos Transgênicos
7.
PLoS One ; 13(3): e0194812, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566041

RESUMO

We have previously investigated the physiological role of C-type natriuretic peptide (CNP) on endochondral bone growth, mainly with mutant mouse models deficient in CNP, and reported that CNP is indispensable for physiological endochondral bone growth in mice. However, the survival rate of CNP knockout (KO) mice fell to as low as about 70% until 10 weeks after birth, and we could not sufficiently analyze the phenotype at the adult stage. Herein, we generated CNP KO rats by using zinc-finger nuclease-mediated genome editing technology. We established two lines of mutant rats completely deficient in CNP (CNP KO rats) that exhibited a phenotype identical to that observed in mice deficient in CNP, namely, a short stature with severely impaired endochondral bone growth. Histological analysis revealed that the width of the growth plate, especially that of the hypertrophic chondrocyte layer, was markedly lower and the proliferation of growth plate chondrocytes tended to be reduced in CNP KO rats. Notably, CNP KO rats did not have malocclusions and survived for over one year after birth. At 33 weeks of age, CNP KO rats persisted significantly shorter than wild-type rats, with closed growth plates of the femur in all samples, which were not observed in wild-type rats. Histologically, CNP deficiency affected only bones among all body tissues studied. Thus, CNP KO rats survive over one year, and exhibit a deficit in endochondral bone growth and growth retardation throughout life.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Peptídeo Natriurético Tipo C/genética , Animais , Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/mortalidade , Doenças do Desenvolvimento Ósseo/patologia , Nanismo/genética , Nanismo/patologia , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Lâmina de Crescimento/patologia , Osteogênese/genética , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
8.
J Reprod Dev ; 63(6): 611-616, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28824040

RESUMO

The present study was conducted to establish haploid embryonic stem (ES) cell lines using fluorescent marker-carrying rats. In the first series, 7 ES cell lines were established from 26 androgenetic haploid blastocysts. However, only 1 ES cell line (ahES-2) was found to contain haploid cells (1n = 20 + X) by fluorescence-activated cell sorting (FACS) and karyotypic analyses. No chimeras were detected among the 10 fetuses and 41 offspring derived from blastocyst injection with the FACS-purified haploid cells. In the second series, 2 ES cell lines containing haploid cells (13% in phES-1 and 1% in phES-2) were established from 2 parthenogenetic haploid blastocysts. Only the phES-2 cell population was purified by repeated FACS to obtain 33% haploid cells. Following blastocyst injection with the FACS-purified haploid cells, no chimera was observed among the 11 fetuses; however, 1 chimeric male was found among the 47 offspring. Although haploid rat ES cell lines can be established from both blastocyst sources, FACS purification may be necessary for maintenance and chimera production.


Assuntos
Linhagem Celular , Células-Tronco Embrionárias , Animais , Blastocisto , Partenogênese , Ratos
9.
Sci Rep ; 6: 27420, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265781

RESUMO

Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2a(L174Q) rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2a(L174Q) mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2a(L174Q) mutation. Neurochemical studies revealed that the Sv2a(L174Q) mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2a(L174Q) mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2a(L174Q) mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis.


Assuntos
Epilepsia/fisiopatologia , Excitação Neurológica/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/fisiologia , Sequência de Aminoácidos , Tonsila do Cerebelo/fisiologia , Animais , Hipocampo/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Ratos , Ratos Endogâmicos F344 , Homologia de Sequência de Aminoácidos , Ácido gama-Aminobutírico/metabolismo
10.
Cell Reprogram ; 18(2): 108-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26990947

RESUMO

Pronucleus-like vesicle formation following premature chromosome condensation (PCC) of the donor cell nucleus is the key event for successful generation of cloned rodents by nuclear transplantation (NT). However in rat cloning, this change is difficult to induce in enucleated recipient oocytes because of their inability to maintain maturation-promoting factor levels. In this study, intact oocytes retrieved from nuclear-visualized H2B-tdTomato knock-in rats were injected with Venus-labeled cell nuclei. Because the incidence of PCC under MG-132 treatment significantly increased with the culture period (0%, 10.8%, 36.8%, and 87.5% at 0, 0.5, 1, and 2 h postinjection, respectively), the metaphase plate of the oocyte was removed 1-2 h after the nuclear injection. The NT-derived rat zygotes (n = 748) were activated with ionomycin/cycloheximide and transferred into temporal host mothers, resulting in the harvest of three blastocysts (0.4%) with Venus fluorescence. Two blastocysts were examined for their potential to commit to NT-derived embryonic stem cells (ntESCs). One ntESC line was established successfully and found to be competent in terms of karyotype, stem cell marker expression, and pluripotency. In conclusion, time-lagged enucleation of visualized oocyte nuclei allows the PCC incidence of donor nuclei and generation of NT blastocysts, and the blastocysts can commit to germline-competent ntESCs.


Assuntos
Blastocisto , Células-Tronco Embrionárias , Técnicas de Transferência Nuclear , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Técnicas de Introdução de Genes/métodos , Masculino , Ratos , Ratos Sprague-Dawley
11.
Anim Sci J ; 86(2): 132-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25187232

RESUMO

Targeted genome editing is a widely applicable approach for efficiently modifying any sequence of interest in animals. It is very difficult to generate knock-out and knock-in animals except for mice up to now. Very recently, a method of genome editing using zinc-finger nucleases (ZFNs) has been developed to produce knockout rats. Since only injection of ZFNs into the pronuclear (PN) embryo is required, it seems to be useful for generating gene-targeted animals, including domestic species. However, no one has reported the successful production of knockout pigs by direct injection of ZFNs into PN embryos. We examined whether ZFN works on editing the genome of porcine growth hormone receptor in two kinds of cell lines (ST and PT-K75) derived from the pig as a preliminary study. Our data showed that pZFN1/2 vectors were efficiently transfected into both ST and PT-K75 cells. In both cell lines, results from Cel-I assay showed that modification of the targeted gene was confirmed. We injected ZFN1/2 mRNAs into the nucleus of PN stage embryos and then they were transferred to the recipients. However, pups were not delivered. Taken together, ZFN can be an available technology of genome editing even in the pig but further improvement will be required for generating genome-modified pigs.


Assuntos
Endonucleases/administração & dosagem , Técnicas de Inativação de Genes/métodos , Marcação de Genes/métodos , Genoma/genética , Receptores da Somatotropina/genética , Suínos/embriologia , Suínos/genética , Dedos de Zinco , Animais , Linhagem Celular , Núcleo Celular , Endonucleases/química , Endonucleases/genética , Feminino , Vetores Genéticos , Camundongos , Microinjeções/métodos , Ratos , Transfecção , Transferência Intratubária do Zigoto
12.
Physiol Genomics ; 45(17): 786-93, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23800849

RESUMO

Leptin is one of the key molecules in maintaining energy homeostasis. Although genetically leptin-deficient Lep(ob)/Lep(ob) mice have greatly contributed to elucidating leptin physiology, the use of more than one species can improve the accuracy of analysis results. Using the N-ethyl-N-nitrosourea mutagenesis method, we generated a leptin-deficient Lep(mkyo)/Lep(mkyo) rat that had a nonsense mutation (Q92X) in leptin gene. Lep(mkyo)/Lep(mkyo) rats showed obese phenotypes including severe fatty liver, which were comparable to Lep(ob)/Lep(ob) mice. To identify genes that respond to leptin in the liver, we performed microarray analysis with Lep(mkyo)/Lep(mkyo) rats and Lep(ob)/Lep(ob) mice. We sorted out genes whose expression levels in the liver of Lep(mkyo)/Lep(mkyo) rats were changed from wild-type (WT) rats and were reversed toward WT rats by leptin administration. In this analysis, livers were sampled for 6 h, a relatively short time after leptin administration to avoid the secondary effect of metabolic changes such as improvement of fatty liver. We did the same procedure in Lep(ob)/Lep(ob) mice and selected genes whose expression patterns were common in rat and mouse. We verified their gene expressions by real-time quantitative PCR. Finally, we identified eight genes that primarily respond to leptin in the liver commonly in rat and mouse. These genes might be important for the effect of leptin in the liver.


Assuntos
Expressão Gênica , Leptina/genética , Fígado/fisiologia , Obesidade/genética , Ratos Mutantes/genética , Animais , Códon sem Sentido , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Leptina/sangue , Leptina/deficiência , Leptina/farmacologia , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Masculino , Camundongos Mutantes , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real
13.
Stem Cells Dev ; 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23635087

RESUMO

The lack of rat embryonic stem cells (ESCs) and approaches for manipulation of their genomes have restricted the ability to create new genetic models and to explore the function of a single gene in complex diseases in the laboratory rat. The recent breakthrough in isolating germline-competent ESCs from rat and subsequent demonstration of gene knockout has propelled the field forward, but such tools do not yet exist for many disease-model rat strains. Here we derive new ESCs from several commonly used rat models including the Dahl Salt Sensitive (SS), the sequenced Brown Norway (BN), and Fischer (F344) rat and establish the first germline-competent ESCs from a hypertension disease model strain, the Fawn Hooded Hypertensive (FHH) rat. Genetic manipulations including transgenesis mediated by lentivirus, routine homologous recombination, and homologous recombination mediated by zinc-finger nucleases (ZFNs) were performed effectively in FHH rat ESCs. Our results showed these rat ESC lines, isolated from inner cell masses using mechanical splitting, had germline competency; the Pparg gene locus and homologous genomic region to the mouse Rosa26 locus can be targeted effectively in these rat ESCs. Furthermore, our results also demonstrated that ZFNs increased the efficiency of proper homologous recombination in FHH rat ESCs using targeting vectors with short homology arms. These rat ESC lines and advancements in genetic manipulation pave the way to novel genetic approaches in this valuable biomedical model species and for exploration of complex disease in these strains.

14.
Anim Sci J ; 84(4): 359-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23590511

RESUMO

A sperm-specific phospholipase C (PLC), PLCzeta (PLCζ), is thought to underlie the initiation of calcium ([Ca(2+) ]i ) oscillations that induce egg activation in mammals. In large domestic species, only bovine, porcine and recently equine PLCζ have been cloned, and the physiological functions of these molecules have not been fully characterized. Here, we evaluated the physiological functions of equine PLCζ (ePLCζ) in mouse oocytes. ePLCζ was cloned from testis using RT-PCR. The expression of ePLCζ messenger RNA was confirmed in testis but not in other tissues. Microinjection of ePLCζ complementary RNA (cRNA) into mouse oocytes induced long-lasting [Ca(2+) ]i oscillations, and most of the injected oocytes formed pronuclei (PN). The injection of cRNAs encoding horse, mouse, human and cow PLCζ into mouse oocytes showed that ePLCζ had the highest [Ca(2+) ]i oscillation-inducing activity among the species tested. Mutation of D202R, which renders the protein inactive, abrogated the activity of ePLCζ. The nuclear translocation ability of ePLCζ was defective when expressed in mouse oocytes. Taken together, our findings show for the first time that ePLCζ has highest activity of the mammalian species studied to date. Our findings will be useful for the improvement of reproductive technologies in the horse.


Assuntos
Cavalos/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Western Blotting , Cálcio/análise , Clonagem Molecular , Feminino , Masculino , Camundongos , Microinjeções , Oócitos/fisiologia , RNA Complementar , Espermatozoides/citologia , Fosfolipases Tipo C/genética
15.
Cell Rep ; 2(3): 685-94, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22981234

RESUMO

Severe combined immunodeficiency (SCID) mice, the most widely used animal model of DNA-PKcs (Prkdc) deficiency, have contributed enormously to our understanding of immunodeficiency, lymphocyte development, and DNA-repair mechanisms, and they are ideal hosts for allogeneic and xenogeneic tissue transplantation. Here, we use zinc-finger nucleases to generate rats that lack either the Prkdc gene (SCID) or the Prkdc and Il2rg genes (referred to as F344-scid gamma [FSG] rats). SCID rats show several phenotypic differences from SCID mice, including growth retardation, premature senescence, and a more severe immunodeficiency without "leaky" phenotypes. Double-knockout FSG rats show an even more immunocompromised phenotype, such as the abolishment of natural killer cells. Finally, xenotransplantation of human induced pluripotent stem cells, ovarian cancer cells, and hepatocytes shows that SCID and FSG rats can act as hosts for xenogeneic tissue grafts and stem cell transplantation and may be useful for preclinical testing of new drugs.


Assuntos
Modelos Animais de Doenças , Imunodeficiência Combinada Severa , Animais , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Técnicas de Inativação de Genes , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos SCID , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Ratos , Ratos Mutantes , Transplante Heterólogo
16.
Hum Mol Genet ; 21(16): 3546-57, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22589250

RESUMO

Mutations of the leucine-rich glioma-inactivated 1 (LGI1) gene cause an autosomal dominant partial epilepsy with auditory features also known as autosomal-dominant lateral temporal lobe epilepsy. LGI1 is also the main antigen present in sera and cerebrospinal fluids of patients with limbic encephalitis and seizures, highlighting its importance in a spectrum of epileptic disorders. LGI1 encodes a neuronal secreted protein, whose brain function is still poorly understood. Here, we generated, by ENU (N-ethyl-N-nitrosourea) mutagenesis, Lgi1-mutant rats carrying a missense mutation (L385R). We found that the L385R mutation prevents the secretion of Lgi1 protein by COS7 transfected cells. However, the L385R-Lgi1 protein was found at low levels in the brains and cultured neurons of Lgi1-mutant rats, suggesting that mutant protein may be destabilized in vivo. Studies on the behavioral phenotype and intracranial electroencephalographic signals from Lgi1-mutant rats recalled several features of the human genetic disorder. We show that homozygous Lgi1-mutant rats (Lgi1(L385R/L385R)) generated early-onset spontaneous epileptic seizures from P10 and died prematurely. Heterozygous Lgi1-mutant rats (Lgi1(+/L385R)) were more susceptible to sound-induced, generalized tonic-clonic seizures than control rats. Audiogenic seizures were suppressed by antiepileptic drugs such as carbamazepine, phenytoin and levetiracetam, which are commonly used to treat partial seizures, but not by the prototypic absence seizure drug, ethosuximide. Our findings provide the first rat model with a missense mutation in Lgi1 gene, an original model complementary to knockout mice. This study revealed that LGI1 disease-causing missense mutations might cause a depletion of the protein in neurons, and not only a failure of Lgi1 secretion.


Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Células COS , Carbamazepina/farmacologia , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Eletroencefalografia , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/genética , Etossuximida/farmacologia , Heterozigoto , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Levetiracetam , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenitoína/farmacologia , Piracetam/análogos & derivados , Piracetam/farmacologia , Ratos Mutantes
17.
Biochem Biophys Res Commun ; 418(3): 553-8, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22293196

RESUMO

To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.


Assuntos
Aterosclerose/genética , Hipercolesterolemia/genética , Receptores de LDL/genética , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/sangue , Hipercolesterolemia/patologia , Lipídeos/sangue , Masculino , Mutação , Ratos , Ratos Endogâmicos F344 , Ratos Mutantes
18.
Brain Res ; 1435: 154-66, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22206926

RESUMO

Mutations in the KCNA1 gene, which encodes for the α subunit of the voltage-gated potassium channel Kv1.1, cause episodic ataxia type 1 (EA1). EA1 is a dominant human neurological disorder characterized by variable phenotypes of brief episodes of ataxia, myokymia, neuromyotonia, and associated epilepsy. Animal models for EA1 include Kcna1-deficient mice, which recessively display severe seizures and die prematurely, and V408A-knock-in mice, which dominantly exhibit stress-induced loss of motor coordination. In the present study, we have identified an N-ethyl-N-nitrosourea-mutagenized rat, named autosomal dominant myokymia and seizures (ADMS), with a missense mutation (S309T) in the voltage-sensor domain, S4, of the Kcna1 gene. ADMS rats dominantly exhibited myokymia, neuromyotonia and generalized tonic-clonic seizures. They also showed cold stress-induced tremor, neuromyotonia, and motor incoordination. Expression studies of homomeric and heteromeric Kv1.1 channels in HEK cells and Xenopus oocytes, showed that, although S309T channels are transferred to the cell membrane surface, they remained non-functional in terms of their biophysical properties, suggesting a dominant-negative effect of the S309T mutation on potassium channel function. ADMS rats provide a new model, distinct from previously reported mouse models, for studying the diverse functions of Kv1.1 in vivo, as well as for understanding the pathology of EA1.


Assuntos
Epilepsia/genética , Síndrome de Isaacs/genética , Canal de Potássio Kv1.1/genética , Mutagênese/efeitos dos fármacos , Mutação de Sentido Incorreto/efeitos dos fármacos , Mioquimia/genética , Animais , Antieméticos/uso terapêutico , Fenômenos Biofísicos/genética , Biotinilação , Peso Corporal/efeitos dos fármacos , Carbamazepina/uso terapêutico , Células Cultivadas , Mapeamento Cromossômico , Análise Mutacional de DNA , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Eletromiografia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/mortalidade , Etilnitrosoureia/toxicidade , Técnicas de Transferência de Genes , Humanos , Síndrome de Isaacs/induzido quimicamente , Síndrome de Isaacs/mortalidade , Canal de Potássio Kv1.1/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Modelos Moleculares , Mutagênicos/toxicidade , Mutação de Sentido Incorreto/genética , Mioquimia/induzido quimicamente , Mioquimia/mortalidade , Oócitos , Técnicas de Patch-Clamp , Transporte Proteico/genética , Desempenho Psicomotor/fisiologia , Ratos , Ratos Endogâmicos F344 , Ratos Mutantes , Análise de Sequência , Serina/genética , Análise de Sobrevida , Natação , Treonina/genética , Fatores de Tempo , Xenopus
19.
Cryobiology ; 63(1): 7-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21513706

RESUMO

For preservation of rat spermatozoa, the general-purpose method requires that the male be sacrificed for collection of spermatozoa from the epididymides. However, it would be highly useful if the ejaculated spermatozoa could be successfully cryopreserved and the frozen-thawed spermatozoa used for in vitro fertilization, since this would allow the genetically valuable rats to be maintained alive rather than sacrificed. The aim of the present study was to clarify whether ejaculated rat spermatozoa could be successfully cryopreserved and fertilized in vitro. The motility and viability of frozen-thawed ejaculated spermatozoa were similar to those of frozen-thawed epididymal spermatozoa (around 10%). The percentage of acrosomal integrity in epididymal spermatozoa was significantly higher than that in ejaculated spermatozoa after freezing/thawing. The level of capacitation-associated protein tyrosine phosphorylation in frozen-thawed ejaculated sperm was slightly increased at 5h. When the frozen-thawed ejaculated spermatozoa were used for in vitro fertilization, the percentages of fertilization, pronuclear formation, and development to the 2-cell stage (26.5%, 23.0%, and 91.0%, respectively) were similar to those of frozen-thawed epididymal spermatozoa (19.4%, 15.0%, and 84.1%, respectively). However, the rate of blastocyst formation in the ejaculated group was significantly lower than that in the epididymal group (12.0% vs 43.2%). Results from the embryo transfer experiment showed that the proportions of embryos developed to term were similar between the ejaculated (47.7%) and epididymal groups (53.7%). We showed here for the first time that ejaculated spermatozoa can be cryopreserved and the frozen-thawed sperm could be developed to term via in vitro fertilization in rats.


Assuntos
Fertilização in vitro/métodos , Oócitos/fisiologia , Preservação do Sêmen/métodos , Animais , Ejaculação , Masculino , Fosforilação , Ratos , Ratos Wistar
20.
J Neurosci ; 30(16): 5744-53, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20410126

RESUMO

Although febrile seizures (FSs) are the most common convulsive syndrome in infants and childhood, the etiology of FSs has remained unclarified. Several missense mutations of the Na(v)1.1 channel (SCN1A), which alter channel properties, have been reported in a familial syndrome of GEFS+ (generalized epilepsy with febrile seizures plus). Here, we generated Scn1a-targeted rats carrying a missense mutation (N1417H) in the third pore region of the sodium channel by gene-driven ENU (N-ethyl-N-nitrosourea) mutagenesis. Despite their normal appearance under ordinary circumstances, Scn1a mutant rats exhibited remarkably high susceptibility to hyperthermia-induced seizures, which involve generalized clonic and/or tonic-clonic convulsions with paroxysmal epileptiform discharges. Whole-cell patch-clamp recordings from HEK cells expressing N1417H mutant channels and from hippocampal GABAergic interneurons of N1417H mutant rats revealed a significant shift of the inactivation curve in the hyperpolarizing direction. In addition, clamp recordings clearly showed the reduction in action potential amplitude in the hippocampal interneurons of these rats. These findings suggest that a missense mutation (N1417H) of the Na(v)1.1 channel confers susceptibility to FS and the impaired biophysical properties of inhibitory GABAergic neurons underlie one of the mechanisms of FS.


Assuntos
Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Convulsões Febris/genética , Canais de Sódio/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Masculino , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.1 , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Convulsões Febris/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...