Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0284513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079546

RESUMO

A qualitative and quantitative understanding of curriculum content is critical for knowing whether it's meeting its learning objectives. Curricula for medical education present challenges due to amount of content, the diversity of topics and the large number of contributing faculty. To create a manageable representation of the content in the pre-clerkship curriculum at Yale School of Medicine, a topic model was generated from all educational documents given to students during the pre-clerkship period. The model was used to quantitatively map content to school-wide competencies. The model measured how much of the curriculum addressed each topic and identified a new content area of interest, gender identity, whose coverage could be tracked over four years. The model also allowed quantitative measurement of integration of content within and between courses in the curriculum. The methods described here should be applicable to curricula in which texts can be extracted from materials.


Assuntos
Estágio Clínico , Educação Médica , Medicina , Humanos , Masculino , Feminino , Identidade de Gênero , Currículo , Docentes
2.
FASEB Bioadv ; 3(3): 175-181, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33363271

RESUMO

Strong and effective clinical teamwork has been shown to improve medical outcomes and reduce medical errors. Incorporating didactic and clinical activities into undergraduate medical education in which students work in teams will develop skills to prepare them to work in clinical teams as they advance through their education and careers. At the Yale School of Medicine, we foster the development of team skills in the classroom through team-based learning (TBL) and in clinical settings with the Interprofessional Longitudinal Clinical Experience (ILCE). Both TBL and ILCE require students work in close physical proximity. The COVID-19 pandemic forced us to immediately adapt our in-person activities to an online format and then develop clinical and interprofessional experiences that adhere to social distancing guidelines. Here we describe our approaches to solving these problems and the experiences of our students and faculty.

3.
Methods Mol Biol ; 714: 221-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431744

RESUMO

mRNA transport is a widely used method to achieve the asymmetric distribution of proteins within a cell or organism. In order to understand how RNA is transported, it is essential to utilize a system that can readily detect RNA movement in live cells. The tagged RNA system has recently emerged as a feasible non-invasive solution for such purpose. In this chapter, we describe in detail the U1A-based tagged RNA system. This system coexpresses U1Ap-GFP with the RNA of interest tagged with U1A aptamers, and has been proven to effectively track RNA in vivo. In addition, we provide further applications of the system for ribonucleoprotein complex purification by TAP-tagging the U1Ap-GFP construct.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/metabolismo , RNA/análise , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Técnicas de Cultura de Células , Sondas Moleculares/genética , RNA/metabolismo , Transporte de RNA , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U1/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transformação Genética
4.
J Cell Biol ; 189(4): 755-67, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20457760

RESUMO

In Saccharomyces cerevisiae, ASH1 mRNA is transported to the bud tip by the class V myosin Myo4. In vivo, Myo4 moves RNA in a rapid and continuous fashion, but in vitro Myo4 is a nonprocessive, monomeric motor that forms a complex with She3. To understand how nonprocessive motors generate continuous transport, we used a novel purification method to show that Myo4, She3, and the RNA-binding protein She2 are the sole major components of an active ribonucleoprotein transport unit. We demonstrate that a single localization element contains multiple copies of Myo4 and a tetramer of She2, which suggests that She2 may recruit multiple motors to an RNA. Furthermore, we show that increasing the number of Myo4-She3 molecules bound to ASH1 RNA in the absence of She2 increases the efficiency of RNA transport to the bud. Our data suggest that multiple, nonprocessive Myo4 motors can generate continuous transport of mRNA to the bud tip.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Transporte de RNA , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética
5.
J Cell Biol ; 178(7): 1193-206, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17893244

RESUMO

The yeast Saccharomyces cerevisiae uses two class V myosins to transport cellular material into the bud: Myo2p moves secretory vesicles and organelles, whereas Myo4p transports mRNA. To understand how Myo2p and Myo4p are adapted to transport physically distinct cargos, we characterize Myo2p and Myo4p in yeast extracts, purify active Myo2p and Myo4p from yeast lysates, and analyze their motility. We find several striking differences between Myo2p and Myo4p. First, Myo2p forms a dimer, whereas Myo4p is a monomer. Second, Myo4p generates higher actin filament velocity at lower motor density. Third, single molecules of Myo2p are weakly processive, whereas individual Myo4p motors are nonprocessive. Finally, Myo4p self-assembles into multi-motor complexes capable of processive motility. We show that the unique motility of Myo4p is not due to its motor domain and that the motor domain of Myo2p can transport ASH1 mRNA in vivo. Our results suggest that the oligomeric state of Myo4p is important for its motility and ability to transport mRNA.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Miosinas/metabolismo , Transporte de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Etildimetilaminopropil Carbodi-Imida/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/isolamento & purificação , Cadeias Pesadas de Miosina/ultraestrutura , Miosina Tipo V/química , Miosina Tipo V/isolamento & purificação , Miosina Tipo V/ultraestrutura , Miosinas/química , Miosinas/isolamento & purificação , Miosinas/ultraestrutura , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 102(50): 18005-10, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16326802

RESUMO

Cytoplasmic mRNA localization is a mechanism used by many organisms to generate asymmetry and sequester protein activity. In the yeast Saccharomyces cerevisiae, mRNA transport to bud tips of dividing cells is mediated by the binding of She2p, She3p, and Myo4p to coding regions of the RNA. To date, 24 bud-localized mRNAs have been identified, yet the RNA determinants that mediate localization remain poorly understood. Here, we used nonhomologous random recombination to generate libraries of sequences that could be selected for their ability to bind She-complex proteins, thereby providing an unbiased approach for minimizing and mapping localization elements in several transported RNAs. Analysis of the derived sequences and predicted secondary structures revealed short sequence motifs that mediate binding to the She complex and RNA localization to the bud tip in vivo. A predicted single-stranded core CG dinucleotide appears to be an important component of the RNA-protein interface, although other nucleotides contribute in a context-dependent manner. Our findings further our understanding of RNA recognition by the She complex, and the methods used here should be applicable for elucidating minimal RNA motifs involved in many other types of interactions.


Assuntos
Repetições de Dinucleotídeos/genética , Complexos Multiproteicos/metabolismo , Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Pareamento de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Biblioteca Gênica , Proteínas de Fluorescência Verde , Complexos Multiproteicos/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Transporte de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
EMBO J ; 21(5): 1158-67, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11867544

RESUMO

RNA localization is a widespread mechanism for achieving localized protein synthesis. In Saccharomyces cerevisiae, Ash1 is a specific repressor of transcription that localizes asymmetrically to the daughter cell nucleus through the localization of ASH1 mRNA to the distal tip of the daughter cell. This localization depends on the actin cytoskeleton and five She proteins, one of which is a type V myosin motor, Myo4. We show here that a novel RNA-binding protein, Khd1 (KH-domain protein 1), is required for efficient localization of ASH1 mRNA to the distal tip of the daughter cell. Visualization of ASH1 mRNA in vivo using GFP-tagged RNA demonstrated that Khd1 associates with the N element, a cis-acting localization sequence within the ASH1 mRNA. Co-immunoprecipitation studies also indicated that Khd1 associates with ASH1 mRNA through the N element. A khd1Delta mutation exacerbates the phenotype of a weak myo4 mutation, whereas overexpression of KHD1 decreases the concentration of Ash1 protein and restores HO expression to she mutants. These results suggest that Khd1 may function in the linkage between ASH1 mRNA localization and its translation.


Assuntos
Proteínas de Ligação a DNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Sítios de Ligação , Polaridade Celular , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Desoxirribonucleases de Sítio Específico do Tipo II/biossíntese , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Substâncias Macromoleculares , Proteínas Motores Moleculares , Fenótipo , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas/fisiologia , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/fisiologia , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...