Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 141949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636918

RESUMO

The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH4/g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4/g VS) and control sample (98.3 mL CH4/g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications.


Assuntos
Hidrodinâmica , Metano , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Biocombustíveis/análise , Reatores Biológicos
2.
ACS Omega ; 7(44): 39959-39969, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385824

RESUMO

Bubble dynamics inside a liquid medium and its interactions with hydrophobic and hydrophilic surfaces are crucial for many industrial processes. Electrospinning of polymers has emerged as a promising fabrication technique capable of producing a wide variety of hydrophobic and hydrophilic polymer nanofibers and membranes at a low cost. Thus, knowledge about the bubble interactions on electrospun hydrophobic and hydrophilic nanofibers can be utilized for capturing; separating; and transporting macro-, micro-, and nanobubbles. In this study, poly(methyl methacrylate) (PMMA) and PMMA-poly(ethylene glycol) (PEG) electrospun nanofibers were fabricated to investigate gas bubble interactions with submerged nanofiber mats. To improve their durability, the nanofibers were reinforced with a plastic mesh. The ultimate tensile strengths of PMMA and PMMA-30%PEG nanofibers were measured as 0.35 and 0.30 MPa, respectively. With the use of reinforcement mesh, the mechanical properties of final membranes could be improved by a factor of 70. The gas permeability of the electrospun and reinforced nanofibers was also studied using the high-speed visualization technique and a homemade setup to investigate the effect of electrospun nanofibers on the bubble coalescence and size in addition to the frequency of released bubbles from the nanofiber mat. The diffusion rate of air bubbles in hydrophobic PMMA electrospun nanofibers was measured as 10 L/s for each square meter of the nanofiber. However, the PMMA-30%PEG mat was able to restrict the diffusion of gas bubbles through its pores owing to the van der Waals force between the water molecules and nanofiber surface as well as the high stability of the thin water layer. It has been shown that the hydrophobic electrospun nanofibers can capture and coalesce the rising gas bubbles and release them with predictable size and frequency. Consequently, the diameter of bubbles introduced to the hydrophobic PMMA membrane ranged between 2 and 25 mm, whereas the diameter of bubbles released from the hydrophobic electrospun nanofibers was measured as 8 ± 1 mm. The proposed mechanism and fabricated electrospun nanofibers can enhance the efficiency of various systems such as heat exchangers, liquid-gas separation filters, and direct air capture (DAC) systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...