Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(46): 23537-23545, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237091

RESUMO

Solar energy can be harvested using luminescent solar concentrators (LSCs) incorporated with edge-mounted solar cells without sacrificing their see-through visibility, thus facilitating the development of solar windows. Eco-friendly carbon dots (CDs) are promising alternatives to heavy-metal-containing quantum dots in LSC applications. Unfortunately, their solid-state quantum yield (QY) at high optical density (required by laminated LSCs) is still low (<30%) and the Stokes shift is only moderate (<100 nm). Here, we studied the host-guest interaction between aminosilane-functionalized, nitrogen-containing CDs (Si-NCDs) and a silica matrix for preparing efficient laminated LSCs. We found that a sol-gel-derived silica matrix with vacuum treatment can efficiently suppress the direct nonradiative transition of the absorbing states and selectively enhance the long-wavelength-emitting surface states. Therefore, the formed Si-NCDs@silica composites simultaneously exhibited high QYs (>60%) and large Stokes shifts (>200 nm) even at a high loading content (∼10 wt%), while still exhibiting high optical transparency. Moreover, unlike conventional QY reduction upon increasing the excitation wavelengths, such high QY values can be maintained over all excitation wavelengths in the absorption region. Benefiting from these photophysical properties, efficient laminated LSCs were simply prepared, yielding a high optical efficiency of ∼4.4%.

2.
J Phys Chem Lett ; 11(2): 567-573, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31885273

RESUMO

Visible-transparent luminescent solar concentrators (VT-LSCs) can be integrated with solar cells for designing solar glasses. Recently, rare-earth complexes, semiconductor nanocrystals, and carbon nanodots (CNDs) have been applied in developing VT-LSCs. However, several challenges still existed, such as quantum yields (QYs) at high-loading contents, scattering/reabsorption losses, and stability. Here, highly luminescent and visible-transparent composites based on organosilane-functionalized CNDs (Si-CNDs) cross-linked in the siloxane matrix were prepared. The composites with a high-loading content (∼10 wt %) possess ultrahigh QYs of ∼94% due to surface passivation, cross-linking-enhanced emission, and negligible inter-CND energy transfer. Moreover, they still appear exceptionally transparent and, thus, are suitable for VT-LSCs. Eco-friendly VT-LSCs without colored tinting were fabricated, yielding high internal and external quantum efficiencies of ∼66% and ∼3.9%. Our demonstration would pave a bright way for the utilization of eco-friendly VT-LSCs in solar glasses.

3.
Sci Rep ; 9(1): 4053, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858497

RESUMO

Colloidal quantum dots (CQDs) have gained much attention as light-emitting materials for light-conversion nano-phosphors and luminescent solar concentrators. Unfortunately, those CQDs involve toxic heavy metals and frequently need to be synthesized in the hazardous organic solvent. In addition, they suffer from severe solid-state aggregation-induced self-quenching and reabsorption losses. To address these issues, here we prepare Zn-coordinated glutathione-stabilized gold-nanocluster (Zn-GSH-AuNCs) assemblies without involving heavy metals and organic solvent. Unlike GSH-AuNCs dispersed in an aqueous solution with poor photoluminescence quantum yields (PL-QYs, typically ~1%), those Zn-GSH-AuNCs powders hold high solid-state PL-QYs up to 40 ± 5% in the aggregated state. Such Zn-induced coordination-enhanced emission (CEE) is attributed to the combined effects of suppressed non-radiative relaxation and enhanced charge-transfer interaction. In addition, they also exhibit a large Stokes shift, thus mitigating both aggregation-induced self-quenching and reabsorption losses. Motivated by these photophysical properties, we demonstrated white-light emission from all non-toxic, aqueous-synthesis nano-materials.

4.
ACS Appl Mater Interfaces ; 10(40): 34184-34192, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30204408

RESUMO

A luminescent solar concentrator (LSC) is composed of loaded luminophores and a waveguide that can be employed to harvest and concentrate both direct and diffused sunlight for promising applications in solar windows. Thus far, most of efficient LSCs still relied on the heavy-metal-containing colloidal quantum dots (CQDs) dispersed into a polymer matrix with a very low loading (typically <1 wt %). Such low-loading constraint is required to mitigate the concentration-induced quenching (CIQ) and maintain high optical quality and film uniformity, but this would strongly reduce the light-absorbing efficiency. To address all issues, greener LSCs with high loading concentration were prepared by in situ cross-linking organosilane-functionalized carbon nanodots (Si-CNDs), and their photophysical properties relevant to LSC operation were studied. The PL emission is stable and does not suffer from the severe CIQ effect for cross-linked Si-CNDs even with 25 wt % loadings, thus exhibiting high solid-state quantum yields (QYs) up to 45 ± 5% after the calibration of the reabsorption losses. Furthermore, such LSCs can still hold high optical quality and film uniformity, leading to low scattering losses and high internal quantum efficiency of ∼22%. However, the reabsorption losses need to be further addressed to realize large-area LSCs based on earth-abundant, cost-effective CNDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...