Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759721

RESUMO

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.


Assuntos
Fitosteróis , Trazodona , Humanos , Feminino , Masculino , Camundongos , Animais , Aripiprazol , Trazodona/farmacologia , Cromatografia Líquida , Polimedicação , Espectrometria de Massas em Tandem , Colesterol , Esteróis , Encéfalo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37336389

RESUMO

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Assuntos
Ácidos Araquidônicos , Pele , Pele/metabolismo , Lipoxigenase/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Graxos , Ácido Araquidônico
3.
Chem Res Toxicol ; 36(4): 565-569, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36999736

RESUMO

Cannabidiol (CBD) vaping products have become widely available in the U.S. since their legalization in 2018. However, little is known about their respiratory health effects. Here we show that aerosolization of commercial CBD vaping products generates a reactive CBD quinone (CBDQ) which forms adducts with protein cysteine residues. Using click chemistry and a novel in vitro vaping product exposure system (VaPES), we further demonstrate that CBDQ forms adducts with human bronchial epithelial cell proteins including Keap1 and activates KEAP1-Nrf2 stress response pathway genes. These results suggest that vaping CBD alters protein function and induces cellular stress pathways in the lung.


Assuntos
Canabidiol , Vaping , Humanos , Benzoquinonas , Canabidiol/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
4.
ACS Pharmacol Transl Sci ; 5(11): 1086-1096, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407960

RESUMO

Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.

5.
Infect Immun ; 89(8): e0014621, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34001560

RESUMO

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Metionina Sulfóxido Redutases/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/imunologia , Camundongos , Viabilidade Microbiana/imunologia , Mutação , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/genética
6.
ACS Pharmacol Transl Sci ; 4(2): 848-857, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860207

RESUMO

Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.

7.
ACS Chem Neurosci ; 12(4): 735-745, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528983

RESUMO

Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.


Assuntos
Colesterol , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Feminino , Camundongos , Neurônios , Gravidez , Prescrições
8.
Transl Psychiatry ; 11(1): 85, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526772

RESUMO

Trazodone (TRZ) is a commonly prescribed antidepressant with significant off-label use for insomnia. A recent drug screening revealed that TRZ interferes with sterol biosynthesis, causing elevated levels of sterol precursor 7-dehydrocholesterol (7-DHC). Recognizing the well-documented, disruptive effect of 7-DHC on brain development, we designed a study to analyze TRZ effects during pregnancy. Utilizing an in vivo model and human biomaterial, our studies were designed to also account for drug interactions with maternal or offspring Dhcr7 genotype. In a maternal exposure model, we found that TRZ treatment increased 7-DHC and decreased desmosterol levels in brain tissue in newborn pups. We also observed interactions between Dhcr7 mutations and maternal TRZ exposure, giving rise to the most elevated toxic oxysterols in brains of Dhcr7+/- pups with maternal TRZ exposure, independently of the maternal Dhcr7 genotype. Therefore, TRZ use during pregnancy might be a risk factor for in utero development of a neurodevelopmental disorder, especially when the unborn child is of DHCR7+/- genotype. The effects of TRZ on 7-DHC was corroborated in human serum samples. We analyzed sterols and TRZ levels in individuals with TRZ prescriptions and found that circulating TRZ levels correlated highly with 7-DHC. The abundance of off-label use and high prescription rates of TRZ might represent a risk for the development of DHCR7 heterozygous fetuses. Thus, TRZ use during pregnancy is potentially a serious public health concern.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Trazodona , Encéfalo/metabolismo , Criança , Colesterol , Feminino , Humanos , Recém-Nascido , Exposição Materna , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Gravidez
9.
J Lipid Res ; 62: 100002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33410752

RESUMO

Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3ß-hydroxysterol-Δ7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral, and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with aging and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or in female Dhcr7L-KO mice, suggesting that hepatic disruption of postsqualene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7.


Assuntos
Síndrome de Smith-Lemli-Opitz
10.
Mol Psychiatry ; 25(11): 2685-2694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32504050

RESUMO

Cariprazine (CAR) is a strong inhibitor of the Dhcr7 enzyme, the last enzyme in the cholesterol biosynthesis pathway. We assessed the effects of CAR on maternally exposed Dhcr7+/- and wild-type mouse offspring, and tested the biochemical effects of CAR in human serum samples. Dhcr7+/- and wild-type time-pregnant mice were exposed to vehicle or 0.2 mg/kg CAR from E12 to E19. Levels of CAR, CAR metabolites, sterols, and oxysterols were measured in the brain of maternally exposed offspring at various time points using LC-MS/MS. Embryonic exposure to CAR significantly increased levels of 7-DHC in all organs of exposed embryos, with a particularly strong effect in the brain. Detectable levels of CAR and elevated 7-DHC were observed in the brain of newborn pups 14 days after drug exposure. In addition, CAR altered sterol metabolism in all animals analyzed, with the strongest effect on the brain of Dhcr7+/- pups born to Dhcr7+/- dams. Furthermore, CAR elevated toxic oxysterols in the brain of maternally exposed Dhcr7+/- offspring to levels approaching those seen in a mouse model of Smith-Lemli-Opitz syndrome. Finally, we observed that patients taking CAR have elevated 7-DHC in their serum. In summary, maternal DHCR7 heterozygosity, combined with offspring DHCR7 heterozygosity might represent a vulnerability factor to medications that interfere with sterol biosynthesis. Due to the conserved sterol biosynthesis between mice and humans, we suggest that the 1-3% of patient population with single-allele DHCR7 mutations might not be ideal candidates for CAR use, especially if they are nursing, pregnant or plan to become pregnant.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colesterol/biossíntese , Exposição Materna/efeitos adversos , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cromatografia Líquida , Feminino , Humanos , Masculino , Camundongos , Gravidez , Espectrometria de Massas em Tandem
11.
Environ Health Perspect ; 128(1): 17014, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31985273

RESUMO

BACKGROUND: Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES: We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS: Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS: Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS: These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.


Assuntos
Poluentes Ambientais/toxicidade , Testes de Toxicidade , Animais , Colesterol/biossíntese , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Células-Tronco
12.
J Biol Chem ; 294(50): 19022-19033, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31666337

RESUMO

The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% (p < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an in vitro model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.


Assuntos
Aldeídos/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas HDL/metabolismo , Lisina/metabolismo , Aldeídos/análise , Animais , Apolipoproteína A-I/metabolismo , Aterosclerose/metabolismo , Células Cultivadas , Feminino , Humanos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/diagnóstico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Mol Psychiatry ; 24(4): 491-500, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742019

RESUMO

Mutations in both copies in the gene encoding 7-dehydrocholesterol reductase (DHCR7) cause Smith-Lemli-Opitz Syndrome (SLOS), which is characterized by a toxic elevation in 7-dehydrocholesterol (7-DHC). Aripiprazole (ARI) exposure, independent of genetic mutations, also leads to elevation of 7-DHC. We investigated the combined effect of a single-copy Dhcr7+/- mutation and maternal ARI exposure on the developing offspring brain. We generated a time-pregnant mouse model where WT and Dhcr7+/- embryos were maternally exposed to ARI or vehicle (VEH) from E12 to E19 (5 mg/kg). Levels of cholesterol, its precursors, ARI and its metabolites were measured at P0. We found that ARI and its metabolites were transported across the placenta and reached the brain of offspring. Maternal ARI exposure led to decreased viability of embryos and increased 7-DHC levels, regardless of maternal or offspring Dhcr7 genotype. In addition, Dhcr7+/- pups were more vulnerable to maternal ARI exposure than their WT littermates, and maternal Dhcr7+/- genotype also exacerbated offspring response to ARI treatment. Finally, both 7-DHC levels and 7-DHC/cholesterol ratio is the highest in Dhcr7+/- pups from Dhcr7+/- mothers exposed to ARI, underscoring a potentially dangerous interaction between maternal genotype×embryonic genotype×treatment. Our findings have important clinical implications. SLOS patients should avoid drugs that increase 7-DHC levels such as ARI, trazodone and haloperidol. In addition, treatment with 7-DHC elevating substances might be potentially unsafe for the 1-1.5% of population with single-allele disruptions of the DHCR7 gene. Finally, prenatal and parental genetic testing for DHCR7 should be considered before prescribing sterol-interfering medications during pregnancy.


Assuntos
Aripiprazol/efeitos adversos , Desenvolvimento Embrionário/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Alelos , Animais , Aripiprazol/metabolismo , Colesterol , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Knockout , Mutação , Neurogênese/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Síndrome de Smith-Lemli-Opitz
15.
J Lipid Res ; 60(2): 360-374, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30482805

RESUMO

Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.


Assuntos
Homeostase , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Sequência de Aminoácidos , Diferenciação Celular , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Hidrólise , Modelos Moleculares , Neurônios/citologia , Conformação Proteica , Tioléster Hidrolases/química , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
16.
Redox Biol ; 19: 105-115, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30142602

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by degeneration of upper and lower motor neurons. While the fundamental causes of the disease are still unclear, the accumulation of Cu,Zn-superoxide dismutase (SOD1) immunoreactive aggregates is associated with familial ALS cases. Cholesterol 5,6-secosterol aldehydes (Seco A and Seco B) are reported to contribute to neurodegenerative disease pathology by inducing protein modification and aggregation. Here we have investigated the presence of secosterol aldehydes in ALS SOD1-G93A rats and their capacity to induce SOD1 aggregation. Secosterol aldehydes were analyzed in blood plasma, spinal cord and motor cortex of ALS rats at the pre-symptomatic and symptomatic stages. Seco B was significantly increased in plasma of symptomatic ALS rats compared to pre-symptomatic animals, suggesting an association with disease progression. In vitro experiments showed that both Seco A and Seco B induce the formation of high molecular weight (HMW) SOD1 aggregates with amorphous morphology. SOD1 adduction to ω-alkynyl-secosterols analyzed by click assay showed that modified proteins are only detected in the HMW region, indicating that secosterol adduction generates species highly prone to aggregate. Of note, SOD1-secosterol adducts containing up to five secosterol molecules were confirmed by MALDI-TOF analysis. Interestingly, mass spectrometry sequencing of SOD1 aggregates revealed preferential secosterol adduction to Lys residues located at the electrostatic loop (Lys 122, 128 and 136) and nearby the dimer interface (Lys 3 and 9). Altogether, our results show that secosterol aldehydes are increased in plasma of symptomatic ALS rats and represent a class of aldehydes that can potentially modify SOD1 enhancing its propensity to aggregate.


Assuntos
Aldeídos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Colesterol/análogos & derivados , Agregação Patológica de Proteínas/metabolismo , Superóxido Dismutase-1/metabolismo , Aldeídos/sangue , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Animais , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Mutação Puntual , Agregados Proteicos , Agregação Patológica de Proteínas/sangue , Agregação Patológica de Proteínas/genética , Ratos Sprague-Dawley , Ratos Transgênicos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/ultraestrutura
17.
Toxicol Appl Pharmacol ; 349: 21-28, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29698737

RESUMO

While antipsychotic medications provide important relief from debilitating psychotic symptoms, they also have significant adverse side effects, which might have relevant impact on human health. Several research studies, including ours, have shown that commonly used antipsychotics such as haloperidol and aripiprazole affect cholesterol biosynthesis at the conversion of 7-dehydrocholesterol (7-DHC) to cholesterol. This transformation is promoted by the enzyme DHCR7 and its inhibition causes increases in plasma and tissue levels of 7-DHC. The inhibition of this enzymatic step by mutations in the Dhcr7 gene leads to Smith-Lemli-Opitz syndrome, a devastating human condition that can be replicated in rats by small molecule inhibitors of DHCR7. The fact that two compounds, brexpiprazole and cariprazine, that were recently approved by the FDA have substructural elements in common with the DHCR7 inhibitor aripiprazole, prompted us to evaluate the effect of brexpiprazole and cariprazine on cholesterol biosynthesis. We report that cariprazine affects levels of 7-DHC and cholesterol in cell culture incubations at concentrations as low as 5 nM. Furthermore, a common metabolite of cariprazine and aripiprazole, 2,3-(dichlorophenyl) piperazine, inhibits DHCR7 activity at concentrations comparable to those of the potent teratogen AY9944. The cell culture experiments were corroborated in mice in studies showing that treatment with cariprazine elevated 7-DHC in brain and serum. The consequences of sterol inhibition by antipsychotics in the developing nervous system and the safety of their use during pregnancy remains to be established.


Assuntos
Antipsicóticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Piperazinas/farmacologia , Animais , Anticolesterolemiantes/farmacologia , Química Encefálica/efeitos dos fármacos , Linhagem Celular , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
J Lipid Res ; 58(11): 2139-2146, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28972118

RESUMO

Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.


Assuntos
Aripiprazol/farmacologia , Inibidores Enzimáticos/farmacologia , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Trazodona/farmacologia , Adulto , Colesterol/biossíntese , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Síndrome de Smith-Lemli-Opitz/enzimologia , Síndrome de Smith-Lemli-Opitz/genética
20.
Chem Res Toxicol ; 30(10): 1797-1803, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28960974

RESUMO

Reactive metabolites (RM) formed from bioactivation of drugs can covalently modify liver proteins and cause mechanism-based inactivation of major cytochrome P450 (CYP450) enzymes. Risk of bioactivation of a test compound is routinely examined as part of lead optimization efforts in drug discovery. Here we described a chemoproteomic platform to assess in vitro and in vivo bioactivation potential of drugs. This platform enabled us to determine reactivity of thousands of proteomic cysteines toward RMs of diclofenac formed in human liver microsomes and living animals. We pinpointed numerous reactive cysteines as the targets of RMs of diclofenac, including the active (heme-binding) sites on several key CYP450 isoforms (1A2, 2E1 and 3A4 for human, 2C39 and 3A11 for mouse). This general platform should be applied to other drugs, drug candidates, and xenobiotics with potential hepatoxicity, including environmental organic substances, bioactive natural products, and traditional Chinese medicine.


Assuntos
Inibidores das Enzimas do Citocromo P-450/efeitos adversos , Sistema Enzimático do Citocromo P-450/metabolismo , Diclofenaco/efeitos adversos , Microssomos Hepáticos/efeitos dos fármacos , Proteômica , Xenobióticos/efeitos adversos , Animais , Inibidores das Enzimas do Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...