Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114009, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38536818

RESUMO

To better understand the function of cholinergic projection neurons in the ventral pallidum (VP), we examined behavioral responses to appetitive (APP) and aversive (AV) odors that elicited approach or avoidance, respectively. Exposure to each odor increased cFos expression and calcium signaling in VP cholinergic neurons. Activity and Cre-dependent viral vectors selectively labeled VP cholinergic neurons that were activated and reactivated in response to either APP or AV odors, but not both, identifying two non-overlapping populations of VP cholinergic neurons differentially activated by the valence of olfactory stimuli. These two subpopulations showed differences in electrophysiological properties, morphology, and projections to the basolateral amygdala. Although VP neurons are engaged in both approach and avoidance behavioral responses, cholinergic signaling is only required for approach behavior. Thus, two distinct subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play distinct roles in approach and avoidance behaviors.


Assuntos
Prosencéfalo Basal , Neurônios Colinérgicos , Odorantes , Animais , Neurônios Colinérgicos/fisiologia , Prosencéfalo Basal/fisiologia , Camundongos , Masculino , Olfato/fisiologia , Camundongos Endogâmicos C57BL
2.
Elife ; 132024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363713

RESUMO

Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can 'learn' the association between a naive tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24 hr later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.


Assuntos
Prosencéfalo Basal , Camundongos , Animais , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Memória/fisiologia , Aprendizagem/fisiologia , Acetilcolina/metabolismo , Colinérgicos
3.
Res Sq ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38405824

RESUMO

Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically-encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can "learn" the association between a naïve tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24h later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.

4.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38260541

RESUMO

In a series of translational experiments using fully quantitative positron emission tomography (PET) imaging with a new tracer specific for the vesicular acetylcholine transporter ([18F]VAT) in vivo in humans, and genetically targeted cholinergic markers in mice, we evaluated whether changes to the cholinergic system were an early feature of age-related cognitive decline. We found that deficits in cholinergic innervation of the entorhinal cortex (EC) and decline in performance on behavioral tasks engaging the EC are, strikingly, early features of the aging process. In human studies, we recruited older adult volunteers that were physically healthy and without prior clinical diagnosis of cognitive impairment. Using [18F]VAT PET imaging, we demonstrate that there is measurable loss of cholinergic inputs to the EC that can serve as an early signature of decline in EC cognitive performance. These deficits are specific to the cholinergic circuit between the medial septum and vertical limb of the diagonal band (MS/vDB; CH1/2) to the EC. Using diffusion imaging, we further demonstrate impaired structural connectivity in the tracts between the MS/vDB and EC in older adults with mild cognitive impairment. Experiments in mouse, designed to parallel and extend upon the human studies, used high resolution imaging to evaluate cholinergic terminal density and immediate early gene (IEG) activity of EC neurons in healthy aging mice and in mice with genetic susceptibility to accelerated accumulation amyloid beta plaques and hyperphosphorylated mouse tau. Across species and aging conditions, we find that the integrity of cholinergic projections to the EC directly correlates with the extent of EC activation and with performance on EC-related object recognition memory tasks. Silencing EC-projecting cholinergic neurons in young, healthy mice during the object-location memory task impairs object recognition performance, mimicking aging. Taken together we identify a role for acetylcholine in normal EC function and establish loss of cholinergic input to the EC as an early, conserved feature of age-related cognitive decline in both humans and rodents.

5.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986753

RESUMO

The ventral pallidum (VP) mediates motivated behaviors largely via the action of VP GABA and glutamatergic neurons. In addition to these neuronal subtypes, there is a population of cholinergic projection neurons in the VP, whose functional significance remains unclear. To understand the functional role of VP cholinergic neurons, we first examined behavioral responses to an appetitive (APP) odor that elicited approach, and an aversive (AV) odor that led to avoidance. To examine how VP cholinergic neurons were engaged in APP vs. AV responses, we used an immediate early gene marker and in-vivo fiber photometry, examining the activation profile of VP cholinergic neurons in response to each odor. Exposure to each odor led to an increase in the number of cFos counts and increased calcium signaling of VP cholinergic neurons. Activity and cre-dependent viral vectors were designed to label engaged VP cholinergic neurons in two distinct contexts: (1) exposure to the APP odor, (2) followed by subsequent exposure to the AV odor, and vice versa. These studies revealed two distinct, non-overlapping subpopulations of VP cholinergic neurons: one activated in response to the APP odor, and a second distinct population activated in response to the AV odor. These two subpopulations of VP cholinergic neurons are spatially intermingled within the VP, but show differences in electrophysiological properties, neuronal morphology, and projections to the basolateral amygdala. Although VP cholinergic neurons are engaged in behavioral responses to each odor, VP cholinergic signaling is only required for approach behavior. Indeed, inhibition of VP cholinergic neurons not only blocks approach to the APP odor, but reverses the behavior, leading to active avoidance. Our results highlight the functional heterogeneity of cholinergic projection neurons within the VP. These two subpopulations of VP cholinergic neurons differentially encode valence of olfactory stimuli and play unique roles in approach and avoidance behaviors.

6.
Nat Rev Neurosci ; 24(4): 233-251, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823458

RESUMO

Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.


Assuntos
Acetilcolina , Prosencéfalo Basal , Humanos , Acetilcolina/fisiologia , Colinérgicos/farmacologia , Cognição , Transdução de Sinais
7.
J Biol Chem ; 298(11): 102602, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265584

RESUMO

In the developing central nervous system, neurogenesis precedes gliogenesis; however, when and how progenitors are specified for a neuronal versus glial fate and the temporal regulation of this process is unclear. Progenitors within the motor neuron progenitor domain in the developing spinal cord give rise to cholinergic motor neurons and cells of the oligodendroglial lineage sequentially. In a recent study, Xing et al. used single cell RNA-seq to identify previously unknown heterogeneity of these progenitors in zebrafish and to delineate the trajectories that distinct pools of these progenitors take. These data help integrate existing evidence and inform new hypotheses regarding how populations of neural progenitors in the same spatial domain commit to distinct fates.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Peixe-Zebra , Animais , Fator de Transcrição 2 de Oligodendrócitos , Medula Espinal , Oligodendroglia , Neurônios Motores , Diferenciação Celular
8.
Front Neural Circuits ; 16: 978837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213206

RESUMO

Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Axônios/metabolismo , Colinérgicos , Ácido Glutâmico , Hipocampo/metabolismo , Camundongos , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
9.
Elife ; 92020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32945260

RESUMO

The basolateral amygdala (BLA) is critical for associating initially neutral cues with appetitive and aversive stimuli and receives dense neuromodulatory acetylcholine (ACh) projections. We measured BLA ACh signaling and activity of neurons expressing CaMKIIα (a marker for glutamatergic principal cells) in mice during cue-reward learning using a fluorescent ACh sensor and calcium indicators. We found that ACh levels and nucleus basalis of Meynert (NBM) cholinergic terminal activity in the BLA (NBM-BLA) increased sharply in response to reward-related events and shifted as mice learned the cue-reward contingency. BLA CaMKIIα neuron activity followed reward retrieval and moved to the reward-predictive cue after task acquisition. Optical stimulation of cholinergic NBM-BLA terminal fibers led to a quicker acquisition of the cue-reward contingency. These results indicate BLA ACh signaling carries important information about salient events in cue-reward learning and provides a framework for understanding how ACh signaling contributes to shaping BLA responses to emotional stimuli.


Assuntos
Acetilcolina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Aprendizagem/fisiologia , Recompensa , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sinais (Psicologia) , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Optogenética
10.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562178

RESUMO

Rett Syndrome is a neurological disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) and characterized by severe intellectual disability. The cholinergic system is a critical modulator of cognitive ability and is affected in patients with Rett Syndrome. To better understand the importance of MeCP2 function in cholinergic neurons, we studied the effect of selective Mecp2 deletion from cholinergic neurons in mice. Mice with Mecp2 deletion from cholinergic neurons were selectively impaired in assays of recognition memory, a cognitive task largely mediated by the perirhinal cortex (PRH). Deletion of Mecp2 from cholinergic neurons resulted in profound alterations in baseline firing of L5/6 neurons and eliminated the responses of these neurons to optogenetic stimulation of cholinergic input to PRH. Both the behavioral and the electrophysiological deficits of cholinergic Mecp2 deletion were rescued by inhibiting ACh breakdown with donepezil treatment.


Assuntos
Neurônios Colinérgicos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Córtex Perirrinal/metabolismo , Reconhecimento Psicológico/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Donepezila/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout , Optogenética , Córtex Perirrinal/efeitos dos fármacos , Fenótipo , Reconhecimento Psicológico/efeitos dos fármacos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
11.
J Neurosci ; 38(44): 9446-9458, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381436

RESUMO

Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.


Assuntos
Prosencéfalo Basal/metabolismo , Córtex Cerebral/metabolismo , Neurônios Colinérgicos/metabolismo , Cognição/fisiologia , Rede Nervosa/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Prosencéfalo Basal/patologia , Córtex Cerebral/patologia , Neurônios Colinérgicos/patologia , Demência/diagnóstico , Demência/fisiopatologia , Demência/psicologia , Humanos , Rede Nervosa/patologia
12.
Nat Biotechnol ; 36(8): 726-737, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985477

RESUMO

The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.


Assuntos
Acetilcolina/metabolismo , Corantes Fluorescentes/química , Receptores Acoplados a Proteínas G/genética , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Drosophila/fisiologia , Células HEK293 , Humanos , Técnicas In Vitro , Limite de Detecção , Camundongos , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Razão Sinal-Ruído
13.
J Neurochem ; 142 Suppl 2: 103-110, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791701

RESUMO

Recent developments in the generation of neuronal population-specific, genetically modified mouse lines have allowed precise identification and selective stimulation of cholinergic neurons in vivo. Although considerably less laborious than studies conducted with post hoc identification of cholinergic neurons by immunostaining, it is not known whether the genetically based labeling procedures that permit in vivo identification are electrophysiologically benign. In this study, we use mice carrying a bacterial artificial chromosome transgene that drives expression of a tau-green fluorescent fusion protein specifically in cholinergic neurons. This allowed us to visualize basal forebrain cholinergic neurons in acute slice preparations. Using whole cell, patch clamp electrophysiological recording in acute brain slices, here we present original data about the basic electrical properties of these genetically tagged cholinergic neurons including firing rate, resting membrane potential, rheobase, and various characteristics of their action potentials and after-hyperpolarization potentials. The basic electrical properties are compared (i) with non-cholinergic neurons in the same brain regions; (ii) in cholinergic neurons between immature animals and young adults; and (iii) with cholinergic neurons that are expressing light-sensitive channels. Our conclusions based on these data are (i) cholinergic neurons are less excitable then their non-cholinergic neighbors, (ii) the basic properties of cholinergic neurons do not significantly change between adolescence and young adulthood and (iii) these properties are not significantly affected by chronic expression of the excitatory opsin, oChIEF. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Optogenética , Animais , Colina O-Acetiltransferase/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Optogenética/métodos , Técnicas de Patch-Clamp/métodos
14.
Behav Brain Res ; 332: 250-258, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28577921

RESUMO

A robust, disease-relevant phenotype is paramount to the validity of genetic mouse models, which are an important tool in understanding complex diseases. Recent evidence from genome-wide association studies suggests the genetic contribution of parents to offspring is not equivalent. Despite this, few studies to date have examined the potential impact of parent genotype (i.e. origin of mutation) on the offspring of disease-relevant genetic mouse models. To elucidate the potential impact of the sex of the mutant parent on offspring phenotype, we characterized male and female offspring of an established schizophrenia mouse model, which had been generated using two different breeding schemes, in a range of disease-relevant behaviours. We compared heterozygous type III neuregulin 1 mutant (type III Nrg1+/-) and wild type-like control (WT) offspring from mutant father x WT mother pairings with offspring from mutant mother x WT father pairings. Offspring were tested in schizophrenia-relevant paradigms including the elevated plus maze (EPM), fear conditioning (FC), prepulse inhibition (PPI), social interaction (SI), and open field (OF). We found type III Nrg1+/- males from mutant fathers, but not mutant mothers, showed deficits in contextual fear-associated memory and exhibited increased social interaction, compared to their WT littermates. Type III Nrg1+/- females across breeding colonies only exhibited a subtle change to their acoustic startle response and sensorimotor gating. These results suggest a paternal-dependent transmission of genetically induced behavioural characteristics. Though the mechanisms governing this phenomenon are unclear, our results show that parental origin of mutation can alter the behavioural phenotype of genetic mouse models. Thus, researchers should carefully consider their breeding scheme when dealing with genetic mouse models of diseases such as schizophrenia.


Assuntos
Neuregulina-1/genética , Esquizofrenia/genética , Psicologia do Esquizofrênico , Animais , Ansiedade , Condicionamento Psicológico , Modelos Animais de Doenças , Comportamento Exploratório , Pai , Medo , Predisposição Genética para Doença , Heterozigoto , Padrões de Herança , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mães , Atividade Motora , Neuregulina-1/deficiência , Fenótipo , Filtro Sensorial , Caracteres Sexuais , Comportamento Social
15.
eNeuro ; 4(1)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275713

RESUMO

Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Neuregulina-1/metabolismo , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Técnicas de Cocultura , Potenciais Pós-Sinápticos Excitadores , Hipocampo/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura , Neuregulina-1/genética , Núcleo Accumbens/ultraestrutura , Sinapses/ultraestrutura , Técnicas de Cultura de Tecidos
16.
J Neurosci ; 36(40): 10337-10355, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27707970

RESUMO

Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET+ mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. SIGNIFICANCE STATEMENT: Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Neuregulina-1/fisiologia , Corpúsculos de Pacini/crescimento & desenvolvimento , Corpúsculos de Pacini/fisiologia , Proteínas Proto-Oncogênicas c-ret/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Animais , Axônios/fisiologia , Proteínas de Ligação a DNA/genética , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Bainha de Mielina/fisiologia , Neuregulina-1/genética , Neurônios/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteínas Proto-Oncogênicas c-ret/genética , Células de Schwann/fisiologia , Fatores de Transcrição/genética
17.
Neuron ; 91(6): 1199-1218, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657448

RESUMO

Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.


Assuntos
Prosencéfalo Basal/citologia , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Cognição/fisiologia , Vias Neurais/fisiologia , Acetilcolina/fisiologia , Animais , Humanos
18.
Neuron ; 90(5): 1057-70, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161525

RESUMO

We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photostimulation of endogenous cholinergic input (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs), (2) enhances glutamatergic synaptic transmission in the BLA, and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Neurônios Colinérgicos/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Medo/psicologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Extinção Psicológica/fisiologia , Ácido Glutâmico/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Camundongos , Estimulação Luminosa , Receptores Colinérgicos/fisiologia , Transmissão Sináptica/fisiologia
19.
J Vis Exp ; (100): e52730, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26132461

RESUMO

Sustained enhancement of axonal signaling and increased neurotransmitter release by the activation of pre-synaptic nicotinic acetylcholine receptors (nAChRs) is an important mechanism for neuromodulation by acetylcholine (ACh). The difficulty with access to probing the signaling mechanisms within intact axons and at nerve terminals both in vitro and in vivo has limited progress in the study of the pre-synaptic components of synaptic plasticity. Here we introduce a gene-chimeric preparation of ventral hippocampal (vHipp)-accumbens (nAcc) circuit in vitro that allows direct live imaging to analyze both the pre- and post-synaptic components of transmission while selectively varying the genetic profile of the pre- vs post-synaptic neurons. We demonstrate that projections from vHipp microslices, as pre-synaptic axonal input, form multiple, reliable glutamatergic synapses with post-synaptic targets, the dispersed neurons from nAcc. The pre-synaptic localization of various subtypes of nAChRs are detected and the pre-synaptic nicotinic signaling mediated synaptic transmission are monitored by concurrent electrophysiological recording and live cell imaging. This preparation also provides an informative approach to study the pre- and post-synaptic mechanisms of glutamatergic synaptic plasticity in vitro.


Assuntos
Axônios/metabolismo , Região CA1 Hipocampal/metabolismo , Sinalização do Cálcio/fisiologia , Nicotina/metabolismo , Animais , Região CA1 Hipocampal/citologia , Técnicas de Cocultura , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios/metabolismo , Neurotransmissores/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
20.
Rev Neurosci ; 25(6): 755-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051276

RESUMO

Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain.


Assuntos
Sistema Nervoso Central/fisiologia , Neurônios Colinérgicos/fisiologia , Optogenética/métodos , Receptores Nicotínicos/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...