Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(44): 41134-41144, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970038

RESUMO

Silver nanoparticles (AgNPs) are well known for their exceptional properties and versatility in various applications. This study used andrographolide as a biochemical stabilizer to synthesize AgNPs (andro-AgNPs). The andro-AgNPs were characterized by using UV-vis spectroscopy, revealing a surface plasmon resonance peak at 440 nm. Fourier transform infrared spectroscopy was also used to confirm the presence of AgNPs. Transmission electron microscopy was used to investigate the morphology of andro-AgNPs, which showed a spherical shape with an average diameter of 18.30 ± 5.57 nm (n = 205). Andro-AgNPs were utilized as a colorimetric sensor to detect mercury ions (Hg2+) in water, and the optimized detection conditions were evaluated using UV-vis spectroscopy with a linear range of 15-120 µM. The limit of detection and the limit of quantification for Hg2+ detection were found to be 11.15 and 37.15 µM, respectively. Furthermore, andro-AgNPs exhibited antibacterial properties against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The results imply that andro-AgNPs hold promising potential for future biomedical applications.

2.
Macromol Biosci ; 23(12): e2300250, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37535979

RESUMO

A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Animais , Hidrogéis/farmacologia , Gelatina/farmacologia , Prata/farmacologia , Antibacterianos/farmacologia , Cicatrização
3.
RSC Adv ; 13(29): 19789-19802, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37404322

RESUMO

This study focused on synthesizing ginger-stabilized silver nanoparticles (Gin-AgNPs) using a more eco-friendly method that utilized AgNO3 and natural ginger solution. These nanoparticles underwent a color change from yellow to colorless when exposed to Hg2+, enabling the detection of Hg2+ in tap water. The colorimetric sensor had good sensitivity, with a limit of detection (LOD) of 1.46 µM and a limit of quantitation (LOQ) of 3.04 µM. Importantly, the sensor operated accurately without being affected by various other metal ions. To enhance its performance, a machine learning approach was employed and achieved accuracy ranging from 0% to 14.66% when trained with images of Gin-AgNP solutions containing different Hg2+ concentrations. Furthermore, the Gin-AgNPs and Gin-AgNPs hydrogels exhibited antibacterial effects against both Gram-negative and Gram-positive bacteria, indicating potential future applications in the detection of Hg2+ and in wound healing.

4.
Sci Rep ; 12(1): 10701, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739211

RESUMO

Burkholderia pseudomallei (B. pseudomallei) is a Gram-negative pathogen that causes melioidosis, a deadly but neglected tropical disease. B. pseudomallei is intrinsically resistant to a growing list of antibiotics, and alternative antimicrobial agents are being sought with urgency. In this study, we synthesize andrographolide-stabilized silver nanoparticles (andro-AgNPs, spherically shaped with 16 nm average diameter) that show excellent antimicrobial activity against B. pseudomallei, including ceftazidime-resistant strains, being 1-3 orders of magnitude more effective than ceftazidime and 1-2 orders of magnitude more effective than other green-synthesized AgNPs. The andro-AgNPs are meanwhile non-toxic to mammalian cell lines. The mode of action of Andro-AgNPs toward B. pseudomallei is unraveled by killing kinetics, membrane neutralization, silver ions (Ag+) release, reactive oxygen species (ROS) induction, membrane integrity, and cell morphology change studies. The antimicrobial activity and mode of action of andro-AgNPs against B. pseudomallei reported here may pave the way to alternative treatments for melioidosis.


Assuntos
Burkholderia pseudomallei , Melioidose , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Diterpenos , Mamíferos , Melioidose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Prata/farmacologia
5.
Sci Rep ; 11(1): 21836, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750447

RESUMO

Biocompatible materials that act as scaffolds for regenerative medicine are of enormous interest. Hydrogel-nanoparticle composites have great potential in this regard, however evaluations of their wound healing and safety in vivo in animal studies are scarce. Here we demonstrate that a guar gum/curcumin-stabilized silver nanoparticle hydrogel composite is an injectable material with exceptional wound healing and antibacterial properties. We show that the curcumin-bound silver nanoparticles themselves exhibit low cytotoxicity and enhance proliferation, migration, and collagen production in in vitro studies of human dermal fibroblasts. We then show that the hydrogel-nanoparticle composite promotes wound healing in in vivo studies on rats, accelerating wound closure by > 40% and reducing bacterial counts by 60% compared to commercial antibacterial gels. Histopathology indicates that the hydrogel composite enhances transition from the inflammation to proliferation stage of healing, promoting the formation of fibroblasts and new blood vessels, while target gene expression studies confirm that the accelerated tissue remodeling occurs along the normal pathways. As such these hydrogel composites show great promise as wound dressing materials with high antibacterial capacity.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Curcumina/química , Estabilidade de Medicamentos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactanos/química , Humanos , Hidrogéis/química , Masculino , Mananas/química , Teste de Materiais , Nanopartículas Metálicas/química , Nanocompostos/administração & dosagem , Nanocompostos/química , Gomas Vegetais/química , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Alicerces Teciduais/química , Cicatrização/fisiologia
6.
Biosensors (Basel) ; 11(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677307

RESUMO

This work describes the facile preparation of a disposable electrochemical biosensor for the detection of Hg(II) in water by modifying the surface of a screen-printed carbon electrode (SPCE). The surface modification consists of the immobilization of a composite layer of silver nanowires, hydroxymethyl propyl cellulose, chitosan, and urease (AgNWs/HPMC/CS/Urease). The presence of the composite was confirmed by scanning electron microscopy (SEM) and its excellent conductivity, due chiefly to the electrical properties of silver nanowires, enhanced the sensitivity of the biosensor. Under optimum conditions, the modified SPCE biosensor showed excellent performance for the detection of Hg(II) ions, with an incubation time of 10 min and a linear sensitivity range of 5-25 µM. The limit of detection (LOD) and limit of quantitation (LOQ) were observed to be 3.94 µM and 6.50 µM, respectively. In addition, the disposable and portable biosensor exhibited excellent recoveries for the detection of Hg(II) ions in commercial drinking water samples (101.62-105.26%). The results are correlated with those obtained from inductively coupled plasma optical emission spectrometry (ICP-OES), indicating that our developed sensor is a reliable method for detection of Hg(II) in real water samples. The developed sensor device is a simple, effective, portable, low cost, and user-friendly platform for real-time detection of heavy metal ions in field measurements with potential for other biomedical applications in the future.


Assuntos
Mercúrio/análise , Poluentes Químicos da Água/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Monitoramento Ambiental , Limite de Detecção , Nanofios
7.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572431

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are applied in various applications in catalysis, biosensing, imaging, and as antibacterial agents. Here we to prepare ZnO nanomaterials decorated by γ-amino butyric acid (GABA), curcumin derivatives (CurBF2) and silver nanoparticles (CurBF2-AgNPs). The structures of all ZnO nanostructures were characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-VIS spectrophotometry, fluorescence spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). Further, their antibacterial activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were investigated through analysis of minimum inhibitory concentration (MIC) method. Among the prepared nanostructures, the ZnO NPs-GABA/CurBF2-AgNPs showed excellent antibacterial activity against both Gram-positive and -negative bacteria. ZnO NPs fabricated here may have potential use in future anti-bacterial compositions and coatings technologies.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119433, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465574

RESUMO

In this work, we report the synthesis of silver nanoparticles (AgNPs) via a wet-chemical reduction procedure using citrate (Cit) and γ-aminobutyric acid (GABA) as stabilizers. The formation of GABA-Cit@AgNPs was confirmed by UV-vis spectroscopy with a surface plasmon resonance band at 393 nm clearly confirming the formation of silver nanoparticles. AgNPs were characterized using UV-vis spectroscopy, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential. The as-prepared AgNPs can be used for the detection of hazardous mercury ions (Hg2+) in water by colorimetric method with a limit of detection (LOD) and limit of quantitation (LOQ) of 2.37 µM and 3.99 µM, respectively. The linear working range for Hg2+ detection is 5-35 µM and the sensor probe was applied to investigate Hg2+ in real drinking water samples with satisfied results. Rapid response to Hg2+ is also observed when the nanoparticles are composited within hydrogels. Moreover, GABA-Cit@AgNPs shows antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fast and sensitive response of the proposed Hg2+ sensor, together with its antibacterial activities, makes GABA-Cit@AgNPs potentially applicable for the development of cheap, portable, colorimetric sensors in fieldwork.


Assuntos
Mercúrio , Nanopartículas Metálicas , Antibacterianos/farmacologia , Colorimetria , Escherichia coli , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Água , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...